Conseil Départemental des Hautes-Pyrénées

Communes de Soues, Barbazan-Debat, Salles-Adour, Allier, Bernac-Debat, Bernac-Dessus et Arcizac-Adour

Aménagement de la liaison Tarbes – Bagnères de Bigorre

Section SOUES / ARCIZAC ADOUR

Dossier d’autorisation au titre de la loi sur l’eau

<table>
<thead>
<tr>
<th>Indice</th>
<th>Etabli par</th>
<th>Date</th>
<th>Libellé de la modification</th>
<th>Vérifié par</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CF</td>
<td>04/01/2013</td>
<td>Création</td>
<td>FW</td>
</tr>
<tr>
<td>B</td>
<td>VL</td>
<td>24/11/2016</td>
<td>Mise à jour</td>
<td>CF</td>
</tr>
<tr>
<td>C</td>
<td>JL + AL</td>
<td>23/02/2017</td>
<td>Mise à jour OTCE et CD65 suite remarques SPEMA du 09/01/2017</td>
<td>ST</td>
</tr>
<tr>
<td>D</td>
<td>CF</td>
<td>18/04/2017</td>
<td>Modifications OTCE suite remarques SPEMA du 03/04/2017</td>
<td>PP</td>
</tr>
<tr>
<td>E</td>
<td>JL</td>
<td>19/04/2017</td>
<td>Modifications CD65 suite remarques SPEMA du 03/04/2017</td>
<td>ST</td>
</tr>
<tr>
<td>F</td>
<td>JL</td>
<td>13/09/2017</td>
<td>Modifications CD65 suite remarques SPEMA du 06/07/2017</td>
<td>ST</td>
</tr>
<tr>
<td>G</td>
<td>JL+AL+ST</td>
<td>13/02/2019</td>
<td>Modifications CD65 suite remarques SPEMA du 14/02/2018 (intégration de la note complémentaire) et du 25/01/2019</td>
<td>ST</td>
</tr>
</tbody>
</table>

F 16 104 FEVRIER 2019
Tableau des modifications apportées au dossier entre la version E déposée en Avril 2017 et la version F de Septembre 2017 :

<table>
<thead>
<tr>
<th>Paragraphe</th>
<th>Page</th>
<th>Nature de la modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIECE III II</td>
<td>17</td>
<td>Mise à jour du linéaire de consolidation ou protection de berges (rubriques 3.1.4.0).</td>
</tr>
<tr>
<td>PIECE IV B.I.4</td>
<td>41</td>
<td>Compléments sur le niveau de la nappe.</td>
</tr>
<tr>
<td>PIECE IV B.II.1.1</td>
<td>43</td>
<td>Mise à jour du Trafic Routier à horizon 2035 avec recalcul des concentrations du rejet.</td>
</tr>
<tr>
<td>PIECE IV B.III.1.3</td>
<td>49</td>
<td>Compléments sur la programmation des travaux et mis à jour dans la dernière version du document.</td>
</tr>
<tr>
<td>PIECE IV C.VI.1</td>
<td>52-53</td>
<td>Compléments techniques explicatifs sur la mesure de réduction envisagée au niveau du ruisseau de La Poutge.</td>
</tr>
<tr>
<td>PIECE IV C.VIII.</td>
<td>59-60</td>
<td>Illustration de la reconstitution de la ripisylve du ruisseau La Poutge avec la fourniture d’une vue en plan.</td>
</tr>
<tr>
<td>PIECE IV D.I.</td>
<td>61-62</td>
<td>Mise à jour compatibilité avec le SDAGE.</td>
</tr>
</tbody>
</table>

Tableau des modifications apportées au dossier entre la version F déposée en Septembre 2017 et la version G de Février 2019 ; intégrant également les éléments de la note complémentaire transmise le 03/04/2018 :

<table>
<thead>
<tr>
<th>Paragraphe</th>
<th>Page</th>
<th>Nature de la modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIECE III II.1</td>
<td>13-14</td>
<td>Mise à jour d’un planning prévisionnel des travaux</td>
</tr>
<tr>
<td>PIECE IV B.I.</td>
<td>35</td>
<td>Précision sur le plan de prévention des risques de Soues</td>
</tr>
<tr>
<td>PIECE IV B.III.1.2</td>
<td>47-49</td>
<td>Mise en cohérence des espèces de la zone Natura 2000 la plus proche</td>
</tr>
<tr>
<td>PIECE IV B.III.2</td>
<td>50</td>
<td>Mise à jour du document</td>
</tr>
<tr>
<td>PIECE IV C.VII.1.4</td>
<td>55</td>
<td>Définition des mesures de suivi sur les rejets dans le milieu naturel</td>
</tr>
<tr>
<td>ANNEXE 3</td>
<td>84</td>
<td>Mise à jour extrait carte Natura 2000 vallée de l’Adour et formulaire standard de données</td>
</tr>
</tbody>
</table>
CD65 – Aménagement de la liaison Tarbes-Bagnères de Bigorre – Section Soues / Arcizac Adour

SOMMAIRE

AVANT-PROPOS ... 5

PIECE I - IDENTIFICATION DU DEMANDEUR ... 6

PIECE II - EMPLACEMENT DU PROJET ... 8

PIECE III - PRESENTATION DU PROJET ET RUBRIQUE DE LA NOMENCLATURE DONT IL RELEVE

I. Milieux aquatiques ... 11
II. Description détaillée de l’opération ... 11
II.1. Nature et objet de l’opération ... 11
II.2. Volume de l’opération ... 14
II.3. Dispositifs de collecte et de traitement des eaux induites ... 15
III. Rubrique de la nomenclature ... 15

PIECE IV - DOCUMENT D’INCIDENCES ... 17

A. ÉTAT INITIAL DU SITE ET DE SON ENVIRONNEMENT .. 18
I. Milieu physique ... 18
I.1. Contexte climatique ... 18
I.2. Contexte pluviométrique .. 18
II. Caractérisation des eaux superficielles .. 19
II.1. Contexte hydrographique .. 19
II.1.1. Description .. 19
II.1.2. Caractérisation des écoulements .. 23
II.1.3. Usages de l’eau .. 23
II.2. Contexte hydrologique et hydraulique ... 23
II.3. Qualité des eaux superficielles .. 24
II.3.1. Définition du bon état .. 24
II.3.2. L’Adour ... 25
II.3.3. Les canaux secondaires du Canal de l’Alaric .. 27
II.4. Usages des eaux superficielles .. 29
II.5. Peuplement piscicole ... 29
III. Caractérisation des eaux souterraines .. 30
III.1. Contexte géologique ... 30
III.2. Contexte hydrogéologique .. 31
III.3. Usages des eaux souterraines .. 31

Milieux naturels ... 32
III.4. Zones naturelles et protections réglementaires ... 32
III.5. Espèces protégées ... 32
III.5.1. Habitats d’espèces ... 33
III.5.2. Espèces ... 33

B. ANALYSE DES IMPACTS DU PROJET SUR LE MILIEU ... 35
I. Impacts quantitatifs ... 35
I.1. Risques d’inondation .. 35
I.2. Débits générés par le projet .. 37
I.3. Écoulements lors d’un événement exceptionnel ... 39
I.4. Pompage dans la nappe souterraine ... 40
II. Impacts qualitatifs ... 41
II.1. Pollution chronique .. 41
II.1.1. Principe de calcul de la pollution chronique ... 41
II.1.2. Projet en site ouvert .. 43
II.1.3. Projet en site restreint ... 44
II.2. Pollution accidentelle ... 46
III. **Incidences vis-à-vis de la zone Natura 2000 la plus proche** ... 47

 III.1. Description du projet .. 47
 III.1.1. Nature du projet .. 47
 III.1.2. Localisation et cartographie .. 47
 III.1.3. Durée prévisible et période envisagée des travaux .. 48
 III.1.4. Budget ... 49
 III.1.5. Entretien / fonctionnement / rejet .. 49

 III.2. Etat des lieux de la zone d’influence ... 49

 III.3. Incidences du projet et conclusion ... 49

IV. **Impact sur le milieu aquatique** ... 50

V. **Incidences en phase de chantier** .. 50

C. **MESURES DE REDUCTION ET COMPENSATOIRES ENVISAGEES** .. 51

VI. **I. Mesures de réduction** ... 51

 VI.1. **I.1 RUISSEAUX LAPOUTGE** ... 51

VII. **II. Mesures compensatoires** .. 52

 VII.1. **II.1 Rejet des eaux pluviales** ... 52
 VII.1.1. **II.1.1 COMPENSATION QUANTITATIVE** .. 52
 VII.1.2. **II.1.2 Objectifs de régulation** .. 52
 VII.1.3. **II.1.3 Dimensionnement des mesures compensatoires** .. 52
 VII.1.4. **II.1.4 Description des mesures compensatoires et mesures de suivi** .. 53
 VII.2. **II.1.2 Niveau de la nappe** .. 56
 VII.3. **II.1.3 Compensation qualitative** .. 56

 VII.2 **II.2 Rétablissement des écoulements naturels en cours d’eau** .. 56

 VII.2.1. **II.2.1 Préconisations générales** ... 56
 VII.2.2. **II.2.2 Déviation et busage du ruisseau d’Ordizan** ... 56
 VII.2.3. **II.2.3 Busage du fossé Est longeant la RD 8** .. 57
 VII.2.4. **II.2.4 Busage du ruisseau des Arribets** ... 57
 VII.2.5. **II.2.5 Passages à sec** .. 58

VIII. **II.3 Reconstitution de ripisylve** .. 58

D. **COMPATIBILITE DU PROJET AVEC LE SDAGE ET SAGE** .. 60

 I. **Compatibilité du projet avec le SDAGE** .. 60

 II. **Compatibilité du projet avec le SAGE** ... 61

E. **RAISONS POUR LESQUELLES LE PROJET A ETÉ RETENU ET RESUME NON TECHNIQUE** 62

 I. **Raisons pour lesquelles le projet a ete retenu** ... 62

 II. **Résuume non technique** ... 62

 II.1. Présentation du projet .. 62

 II.2. Contexte réglementaire ... 62

 II.3. Etat initial ... 63

 II.4. Incidences du projet et mesures compensatoires .. 63

PIECE V - **MOYENS DE SURVEILLANCE ET D’INTERVENTION** ... 65

PIECES GRAPHIQUES ... 68

ANNEXES ... 78
AVANT-PROPOS

Afin de poursuivre son action de désenclavement de la vallée de l’Adour, le Conseil Départemental des Hautes-Pyrénées projette la réalisation d’un aménagement routier reliant l’échangeur autoroutier Tarbes-Est à Soues à la RD8 à Arcizac-Adour.

Cet aménagement (DUP 2007) concerne environ 6 km de voie, 69 ha de bassin versant et nécessite un certain nombre de travaux hydrauliques (déviation de fossés et cours d’eau notamment).

La loi sur l'eau du 3 janvier 1992 affirme la nécessité de maîtriser les eaux pluviales à la fois sur le plan quantitatif et qualitatif, dans les politiques d'aménagement de l'espace, induisant une imperméabilisation des sols.

Ce dossier a été réalisé conformément aux dispositions définies par l’article R214-6 du Code de l’environnement, modifié par le décret n°2010-365 du 9 avril 2010.

Il comprend les pièces suivantes:

- PIECE I : Identification du demandeur et de son mandataire
- PIECE II : Emplacement du projet
- PIECE III : Présentation du projet et liste des rubriques dont il relève
- PIECE IV : Document d'incidences
- PIECE V : les moyens de surveillance prévus
- Les éléments graphiques utiles à la compréhension des pièces du dossier.
PIECE I - IDENTIFICATION DU DEMANDEUR
La présente déclaration est déposée par :

CONSEIL DEPARTEMENTAL DES HAUTES PYRENEES
DIRECTION DES ROUTES ET TRANSPORT

11, rue Gaston Manent
65013 Tarbes cedex 9
Tél. : 05 62 56 78 65
Fax : 05 62 56 78 66
SIRET : 226 500 015 00012
PIECE II - EMIPLACEMENT DU PROJET
Situation géographique :

Département : HAUTE-PYRENEES (65)
Communes : Soues, Barbazan-Debat, Salles-Adour, Allier, Bernac-Debat, Bernac-Dessus et Arcizac-Adour
Superficie du bassin versant : 507 575 m²
Cours d'eau concernés : Ruisseau d'Ordizan, fossé des Aulnes, fossé longeant la RD8, ruisseau des Arribets, ruisseau de Lapoutge, fossé de l'égalité
Points de rejet :
BR1 : 464 445 / 6 233 600 (Lambert 93), Niveau : 390,25 mNGF
BR2 : 464 420 / 6 234 345 (Lambert 93), Niveau : 383,20 mNGF
BR3 : 464 390 / 6 234 785 (Lambert 93), Niveau : 378,10 mNGF
BR4 : 464 365 / 6 236 395 (Lambert 93), Niveau : 361,00 mNGF
BR5 : 464 605 / 6 237 560 (Lambert 93), Niveau : 350,30 mNGF
BR6 : 464 195 / 6 237 305 (Lambert 93), Niveau : 352,05 mNGF
BR7 : 465 074 / 6 238 658 (Lambert 93), Niveau : 337,70 mNGF
Bassin hydrographique : ADOUR
PIECE III - PRESENTATION DU PROJET ET RUBRIQUE DE LA NOMENCLATURE DONT IL RELEVE
I. MILIEUX AQUATIQUES

Les milieux aquatiques concernés par le présent projet sont les suivants :
✓ Ruisseau d’Ordizan,
✓ Ruisseau des Arribets,
✓ Ruisseau de Lapoutge,
✓ L’Adour

II. DESCRIPTION DETAILLEE DE L’OPERATION

Planches 1 – Description générale du projet

II.1. NATURE ET OBJET DE L’OPÉRATION

Le Conseil Départemental des Hautes-Pyrénées souhaite désenclaver les RD 935 et RD 8 actuelles, par la déviation de la RD 8 en créant un nouveau tracé entre Tarbes et Bagnères de Bigorre.

Ce nouveau tracé a été divisé en 4 tronçons, dont le tronçon Soues – Arcizac-Adour, objet de la présente demande d’autorisation. Il se raccorde à Soues sur le giratoire de la future ZAC « Parc de l’Adour ».

Le projet a pour objectif :
✓ De soulager les traversées d’agglomération du trafic de transit ;
✓ De renforcer la sécurité sur cet axe, notamment pour les riverains ;
✓ D’améliorer les échanges avec les autres voies importantes dont la RD15, la RD16, la RD508 et la RD86 ;
✓ De simplifier les liaisons entre Barbazan-Debat, Sémeac et Soues et l’accès des communes du Sud et Sud-Est de Tarbes vers l’échangeur Tarbes-Est ;
✓ De détourner l’itinéraire d’un passage à niveau dangereux avec la voie ferrée entre Arcizac-Adour et Bernac-Debat ;
✓ De réduire les nuisances sur les riverains de la RD8 existante (nuisances sonores, pollution atmosphérique, nuisances visuelles et vibrations dues aux passages des poids lourds).

Ce tronçon concerne environ 6 km de voie. Il prévoit deux passages inférieurs et 4 giratoires.

Le profil en travers évolue le long de l’opération. De manière générale, il prévoit une chaussée de 7 m de largeur, un accotement et des fossés intercepteurs du ruissellement. Selon les profils, il intègre également deux pistes cyclables (au Nord) et des merlons.

Le Département des Hautes-Pyrénées a déjà réalisé le giratoire à l’intersection entre la RD292 et la future RD8 sur la commune de Barbazan-Debat.

La programmation des travaux est étroitement liée aux contraintes suivantes :
- A l’obtention des autorisations administratives ;
- A la capacité financière du Département, liée à l’évolution des dotations de l’Etat,
- Au dévoiement des différents réseaux présents tout au long de l’itinéraire routier, notamment TEREGA,
- A l’avancement des études techniques et au lancement des différents marchés de travaux.
Néanmoins, la programmation des travaux devra impérativement prendre en compte les contraintes environnementales induites par le calendrier. A cet effet et à titre prévisionnel, les travaux dans un cours d’eau ne pourront pas être autorisés entre Novembre de l’année N et fin Mars de l’année N+1.

A titre informatif, veuillez trouver ci-après un planning prévisionnel d’exécution des travaux :
RÉALISATION DE LA SECTION SOUES ARCIZAC ADOUR
CALENDRIER PRÉVISIONNEL DES TRAVAUX

<table>
<thead>
<tr>
<th>Numéro</th>
<th>Description</th>
<th>Durée</th>
<th>Début</th>
<th>Fin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dépôt dossier loi sur l'eau indice E</td>
<td>40 jours</td>
<td>Ven 07/08/20</td>
<td>Jeu 07/08/20</td>
</tr>
<tr>
<td>2</td>
<td>Dépôt dossier loi sur l'eau indice F</td>
<td>30 jours</td>
<td>Mar 09/08/20</td>
<td>Ven 09/08/20</td>
</tr>
<tr>
<td>3</td>
<td>Dépôt dossier loi sur l'eau indice G</td>
<td>28 jours</td>
<td>Jeu 16/08/20</td>
<td>Ven 16/08/20</td>
</tr>
<tr>
<td>4</td>
<td>Dépôt dossier loi sur l'eau indice H</td>
<td>22 jours</td>
<td>Mar 23/08/20</td>
<td>Ven 23/08/20</td>
</tr>
<tr>
<td>5</td>
<td>Dépôt dossier loi sur l'eau indice I</td>
<td>21 jours</td>
<td>Mar 30/08/20</td>
<td>Mer 30/08/20</td>
</tr>
<tr>
<td>6</td>
<td>Dépôt dossier loi sur l'eau indice J</td>
<td>20 jours</td>
<td>Ven 06/09/20</td>
<td>Lun 06/09/20</td>
</tr>
<tr>
<td>7</td>
<td>Dépôt dossier loi sur l'eau indice K</td>
<td>15 jours</td>
<td>Lun 13/09/20</td>
<td>Mer 13/09/20</td>
</tr>
<tr>
<td>8</td>
<td>Dépôt dossier loi sur l'eau indice L</td>
<td>12 jours</td>
<td>Ven 20/09/20</td>
<td>Ven 20/09/20</td>
</tr>
<tr>
<td>9</td>
<td>Dépôt dossier loi sur l'eau indice M</td>
<td>10 jours</td>
<td>Lun 27/09/20</td>
<td>Lun 27/09/20</td>
</tr>
<tr>
<td>10</td>
<td>Dépôt dossier loi sur l'eau indice N</td>
<td>7 jours</td>
<td>Ven 04/10/20</td>
<td>Ven 04/10/20</td>
</tr>
<tr>
<td>11</td>
<td>Dépôt dossier loi sur l'eau indice O</td>
<td>5 jours</td>
<td>Lun 11/10/20</td>
<td>Lun 11/10/20</td>
</tr>
<tr>
<td>12</td>
<td>Dépôt dossier loi sur l'eau indice P</td>
<td>3 jours</td>
<td>Ven 18/10/20</td>
<td>Ven 18/10/20</td>
</tr>
<tr>
<td>13</td>
<td>Dépôt dossier loi sur l'eau indice Q</td>
<td>1 jour</td>
<td>Lun 25/10/20</td>
<td>Lun 25/10/20</td>
</tr>
<tr>
<td>14</td>
<td>Dépôt dossier loi sur l'eau indice R</td>
<td>6 mois</td>
<td>Ven 01/11/20</td>
<td>Ven 01/11/20</td>
</tr>
<tr>
<td>15</td>
<td>Dépôt dossier loi sur l'eau indice S</td>
<td>3 mois</td>
<td>Lun 08/11/20</td>
<td>Lun 08/11/20</td>
</tr>
<tr>
<td>16</td>
<td>Dépôt dossier loi sur l'eau indice T</td>
<td>3 mois</td>
<td>Ven 15/11/20</td>
<td>Ven 15/11/20</td>
</tr>
<tr>
<td>17</td>
<td>Dépôt dossier loi sur l'eau indice U</td>
<td>2 mois</td>
<td>Lun 22/11/20</td>
<td>Lun 22/11/20</td>
</tr>
<tr>
<td>18</td>
<td>Dépôt dossier loi sur l'eau indice V</td>
<td>1 mois</td>
<td>Ven 29/11/20</td>
<td>Ven 29/11/20</td>
</tr>
<tr>
<td>19</td>
<td>Dépôt dossier loi sur l'eau indice W</td>
<td>10 jours</td>
<td>Lun 06/12/20</td>
<td>Lun 06/12/20</td>
</tr>
<tr>
<td>20</td>
<td>Dépôt dossier loi sur l'eau indice X</td>
<td>10 jours</td>
<td>Ven 13/12/20</td>
<td>Ven 13/12/20</td>
</tr>
<tr>
<td>21</td>
<td>Dépôt dossier loi sur l'eau indice Y</td>
<td>10 jours</td>
<td>Lun 20/12/20</td>
<td>Lun 20/12/20</td>
</tr>
<tr>
<td>22</td>
<td>Dépôt dossier loi sur l'eau indice Z</td>
<td>10 jours</td>
<td>Ven 27/12/20</td>
<td>Ven 27/12/20</td>
</tr>
</tbody>
</table>

Notes:
- Les dates de début et de fin sont approximatives.
- Les travaux sont réalisés en plusieurs étapes.
- Les délais sont en jours ou mois.
Volume de l’opération

- **Bassin versant intercepté par l’opération**

Le projet intercepte le ruissellement des parcelles cultivées aux alentours et de la demi-voie ferrée qu’il longe. Ce ruissellement sera repris dans les fossés de collecte de la chaussée et sera donc intégré aux calculs de dimensionnement des mesures compensatoires.

Le bassin versant intercepté reste néanmoins limité car la future voie longe la voie ferrée sur la majorité du linéaire à l’Est et des ruisseaux ou des fossés à l’Ouest. Pour le reste, le terrain étant relativement plat, les limites de bassins versants longent la plupart du temps la future voie.

- **Superficies caractérisant l’opération**

Les superficies caractérisant ce projet sont les suivantes :

<table>
<thead>
<tr>
<th>Bassin versant 1</th>
<th>Assiette du projet</th>
<th>Caractéristiques du projet</th>
</tr>
</thead>
<tbody>
<tr>
<td>S = 22 360 m²</td>
<td>$ = 507 575 m²</td>
<td></td>
</tr>
<tr>
<td>Don chaussée</td>
<td>S = 6 470 m²</td>
<td></td>
</tr>
<tr>
<td>Don accotement</td>
<td>S = 3 090 m²</td>
<td></td>
</tr>
<tr>
<td>Don fossé imperméable</td>
<td>S = 3 690 m²</td>
<td></td>
</tr>
<tr>
<td>Don espace vert</td>
<td>S = 9 110 m²</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bassin versant 2</th>
<th>$ = 75 090 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Don chaussée</td>
<td>S = 8 620 m²</td>
</tr>
<tr>
<td>Don accotement</td>
<td>S = 2 280 m²</td>
</tr>
<tr>
<td>Don fossé imperméable</td>
<td>S = 3 350 m²</td>
</tr>
<tr>
<td>Don trottoir</td>
<td>S = 1 500 m²</td>
</tr>
<tr>
<td>Don espace vert</td>
<td>S = 19 865 m²</td>
</tr>
<tr>
<td>Don bassin versant amont</td>
<td>S = 39 475 m²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bassin versant 3</th>
<th>$ = 7 695 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Don chaussée</td>
<td>S = 1 835 m²</td>
</tr>
<tr>
<td>Don accotement</td>
<td>S = 950 m²</td>
</tr>
<tr>
<td>Don fossé imperméable</td>
<td>S = 1 215 m²</td>
</tr>
<tr>
<td>Don espace vert</td>
<td>S = 3 695 m²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bassin versant 4</th>
<th>$ = 162 830 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Don chaussée</td>
<td>S = 13 455 m²</td>
</tr>
<tr>
<td>Don accotement</td>
<td>S = 6 600 m²</td>
</tr>
<tr>
<td>Don fossé imperméable</td>
<td>S = 8 235 m²</td>
</tr>
<tr>
<td>Don espace vert</td>
<td>S = 24 725 m²</td>
</tr>
<tr>
<td>Don bassin versant amont</td>
<td>S = 112 815 m²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bassin versant 5</th>
<th>$ = 110 805 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Don chaussée</td>
<td>S = 13 720 m²</td>
</tr>
<tr>
<td>Don accotement</td>
<td>S = 5 520 m²</td>
</tr>
<tr>
<td>Don fossé imperméable</td>
<td>S = 6 995 m²</td>
</tr>
<tr>
<td>Don piste cyclable</td>
<td>S = 1 400 m²</td>
</tr>
<tr>
<td>Don espace vert</td>
<td>S = 38 965 m²</td>
</tr>
<tr>
<td>Don bassin versant amont</td>
<td>S = 44 205 m²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bassin versant 6</th>
<th>$ = 4 400 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Don chaussée</td>
<td>S = 3 390 m²</td>
</tr>
<tr>
<td>Don accotement</td>
<td>S = 360 m²</td>
</tr>
</tbody>
</table>
Dont espace vert \(S = 650 \text{ m}^2 \)

Bassin versant 7

<table>
<thead>
<tr>
<th>Description</th>
<th>Surface (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dont chaussée</td>
<td>(17905)</td>
</tr>
<tr>
<td>Dont accotement</td>
<td>(6260)</td>
</tr>
<tr>
<td>Dont fossé imperméable</td>
<td>(6400)</td>
</tr>
<tr>
<td>Dont piste cyclable</td>
<td>(3180)</td>
</tr>
<tr>
<td>Dont espace vert</td>
<td>(14710)</td>
</tr>
<tr>
<td>Dont bassin versant amont</td>
<td>(75940)</td>
</tr>
</tbody>
</table>

La **superficie imperméable introduite dans le cadre du projet est donc de** \(101360 \text{ m}^2 \) (chaussée, fossé imperméable, trottoir et piste cyclable).

II.2. Dispositifs de collecte et de traitement des eaux induites

Planches 2 – Principes d’assainissement

Les eaux de ruissellement du projet et du bassin versant amont seront collectées par un réseau superficiel imperméable, stockées dans 7 bassins de rétention, puis rejetées sous régulation au réseau superficiel existant.

La période de retour de défaillance retenue pour le dimensionnement de ces ouvrages est de 10 ans en global, et 2 ans pour la partie étanche des bassins.

III. Rubrique de la nomenclature

Au vu de ses caractéristiques, le projet routier est soumis à autorisation au titre de l’article R.214-1 du Code de l’environnement, par référence aux rubriques suivantes de cette loi :

<table>
<thead>
<tr>
<th>Rubrique</th>
<th>Libellé</th>
<th>Caractéristiques du projet</th>
<th>Régime</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3.1.0</td>
<td>Ouvrages, installations, travaux permettant un prélèvement total d’eau dans une zone où des mesures permanentes de répartition quantitative instituées, notamment au titre de l’article L. 211-2 du code de l’environnement, ont prévu l’abaissement des seuils : Capacité supérieure ou égale à 8 m³/h (\Rightarrow) autorisation Dans les autres cas (\Rightarrow) déclaration</td>
<td>Pompage pendant les travaux estimé à 17 m³/h en zone de répartition des eaux</td>
<td>Autorisation</td>
</tr>
<tr>
<td>2.1.5.0</td>
<td>Rejet d’eaux pluviales dans les eaux douces superficielles ou sur le sol ou dans le sous-sol, la surface totale du projet, augmentée de la surface correspondant à la partie du bassin versant naturel dont les écoulements sont interceptés par le projet, étant : Supérieure ou égale à 20 ha (\Rightarrow) autorisation Supérieure à 1 ha mais inférieure à 20 ha (\Rightarrow) déclaration</td>
<td>(S = 50,8) ha</td>
<td>Autorisation</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Impacts</td>
<td>Authorisation</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>---------</td>
<td>---------------</td>
</tr>
<tr>
<td>3.1.2.0</td>
<td>Installations, ouvrages, travaux ou activités conduisant à modifier le profil en long ou le profil en travers du cours d’eau, à l’exclusion de ceux visés à la rubrique 3.1.4.0, ou conduisant à la dérivation d’un cours d’eau :</td>
<td>Sur une longueur supérieure ou égale à 100 m ⇒ autorisation Sur une longueur inférieure à 100 m ⇒ déclaration</td>
<td></td>
</tr>
<tr>
<td>3.1.3.0</td>
<td>Installations ou ouvrages ayant un impact sensible sur la luminosité nécessaire au maintien de la vie et de la circulation aquatique dans un cours d’eau sur une longueur : Supérieure ou égale à 100 m ⇒ autorisation Supérieure ou égale à 10 m et inférieure à 100 m ⇒ déclaration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1.4.0</td>
<td>Consolidation ou protection de berges par des techniques autres que végétales vivantes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1.5.0</td>
<td>Installations, ouvrages, travaux ou activités, dans le lit mineur d’un cours d’eau, étant de nature à détruire les frayères, zones de croissance ou les zones d’alimentation de la population piscicole, des crustacés et des batraciens : Destruction de plus de 200 m² de frayères ⇒ autorisation Dans les autres cas ⇒ déclaration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2.4.0</td>
<td>Installations ou activité à l’origine d’un effluents correspondant à un apport de plus 1 t/j de sels dissous</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PIECE IV - DOCUMENT D'INCIDENCES
A. ÉTAT INITIAL DU SITE ET DE SON ENVIRONNEMENT

I. MILIEU PHYSIQUE

I.1. CONTEXTE CLIMATIQUE

La région tarbaise profite d’un climat tempéré chaud et orageux en été, pluvieux et frais au printemps et doux et ensoleillé en automne.

Le total annuel de précipitations de 1 047 mm en moyenne.

Le graphe ci-dessous présente les amplitudes thermiques et précipitations mensuelles moyennes sur la période 1971-2000 à la station météorologique de Tarbes Ossun (source Météo-France) :

I.2. CONTEXTE PLUVIOMÉTRIQUE

Un événement pluvieux est paramétré par sa durée (t) et sa période de retour (T).

Les observations pluviographiques réalisées à la station météorologique de Tarbes-Ossun permettent de déterminer les hauteurs de pluie nominales (données Météo France) :

<table>
<thead>
<tr>
<th>Période de retour</th>
<th>15 min</th>
<th>30 min</th>
<th>1 h</th>
<th>24 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 ans</td>
<td>11,4 mm</td>
<td>12,4 mm</td>
<td>17,9 mm</td>
<td>46,5 mm</td>
</tr>
<tr>
<td>10 ans</td>
<td>18,6 mm</td>
<td>22,5 mm</td>
<td>28,4 mm</td>
<td>68,7 mm</td>
</tr>
</tbody>
</table>
Les observations pluviographiques réalisées à la station météorologique de Tarbes Ossun sur la période 1961-2011 peuvent faire l’objet d’un ajustement à une loi dite de Montana, sous la forme suivante :

\[I_T(t) = a \cdot t^{-b} \]

- \(t \) = durée de l’épisode pluvieux (h)
- \(T \) = période de retour de l’épisode pluvieux
- \(I \) = intensité pluviométrique (mm/h) pour une période de retour et une durée données
- \(a \) et \(b \) = coefficients de Montana (dépendant de \(T \))

Les coefficients retenus pour une durée comprise entre 6 et 30 min sont les suivants :

<table>
<thead>
<tr>
<th>(T) = 2 ans</th>
<th>(T) = 10 ans</th>
<th>(T) = 100 ans</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>43,44</td>
<td>53,28</td>
</tr>
<tr>
<td>(b)</td>
<td>0,394</td>
<td>0,340</td>
</tr>
</tbody>
</table>

II. **CARACTERISATION DES EAUX SUPERFICIELLES**

II.1. **CONTEXTE HYDROGRAPHIQUE**

- Planches 3 – Contexte hydrographique

De manière globale, le réseau hydrographique de la zone est complexe car traversé par un réseau ramifié de canaux et canalettes d’irrigation, provenant du Canal de l’Alaric, sans bassin versant à proprement parler.

Ainsi sur l’espace concerné par le projet, on rencontre le ruisseau d’Ordizan, le fossé des Aulnes, le fossé longeant le RD 8, le fossé de l’Egalité, le ruisseau des Arribets et le ruisseau de Lapoutge.

II.1.1. Description

- **Ruisseau d’Ordizan**

Il s’agit d’un canal d’irrigation, prenant sa source dans le Canal de l’Alaric au niveau d’Ordizan. Il longe la RD8 jusqu’au croisement avec la Cami de Saint Roch, puis la voie ferrée jusqu’au village de Bernac-Debat, où il est canalisé puis rejoint le fossé Est longeant la RD8 au niveau de la RD508.

Il présente, au droit du croisement de la RD8 et de la Cami de Saint Roch, une profondeur de 60 cm, une largeur en tête de 2,1 m et une largeur en fond de 60 cm.

La granulométrie de ce ruisseau est composée de petits cailloux sur lit de graviers et de limons.

Il présente une ripisylve nulle en amont de Bernac-Debat, une ripisylve composée de broussailles en rive gauche à l’entrée du village, puis de nouveau aucune ripisylve jusqu’à son exutoire.
Ruisseau d’Ordizan : vue vers Bernac-Dessus (en haut à gauche), lit mineur (en haut à droite), en sortie de Bernac-Debat (en bas à gauche) et canalisé à l’entrée de Bernac-Debat (en bas à droite)

- **Fossé des Aulnes**

Il s’agit là encore d’un canal d’irrigation, débutant au niveau du ruisseau le Caparrieu, lui-même étant dérivé du Canal de l’Alaric. Il longe le chemin liaisonnant la RD119 à la RD 15 sur environ 900 m avant de rejoindre le fossé Est longeant la RD8 au croisement avec la RD15.

Fossé des Aulnes : traversée sous la RD15 et la voie ferrée (à gauche) et vue vers l’amont (à droite)

Il présente, en amont de la traversée de la voie ferrée permettant le raccordement avec les fossés longeant la RD8, une profondeur de 70 cm, une largeur en tête de 3,30 m et une largeur en fond de 1,20 m. L’écoulement n’est pas permanent.
Fossé longeant la RD 8

Ce fossé est alimenté par les dérivations du Canal de l’Alaric (ruisseaux d’Ordizan et de Caparrieu et fossé des Aulnes) et par le ruissellement de la route. Il longe la RD8 sur tout son long côté Est jusqu’au niveau de la commune de Salles-Adour. Au-delà, les deux fossés routiers assurent les écoulements et rejoignent l’Adour sur la commune de Soues.

Plus en détail, l’extrémité amont du fossé Est se situe au niveau d’une prise d’eau sur le ruisseau d’Ordizan, qui traverse la voie ferrée et alimente le fossé. La prise d’eau est constituée de 2 busages Ø400 dotés de 2 vannes manuelles qui permettent d’obturier plus ou moins les busages. Le jour de notre visite de terrain, les deux vannes étaient grandes ouvertes et l’écoulement se partageait donc entre les 2 biefs (ruisseau et fossé longeant la RD 8).

Un kilomètre en aval, il reçoit de nouveau les écoulements du ruisseau d’Ordizan renforcés par une partie de ceux du ruisseau de Caparrieu. Enfin, plus en aval encore, le fossé de la RD 8 reçoit les écoulements du fossé des Aulnes.

Le fossé longeant la RD 8 ne présente aucune ripisylve sur toute sa longueur.

Au niveau du futur giratoire du projet au Sud de Soues, le fossé Est présente une profondeur de 70 cm, une largeur en tête de 1,80 m et une largeur en fond de 80 cm. Le fossé Ouest présente quant à lui une profondeur de 50 cm, une largeur en tête de 1,70 m et une largeur en fond de 50 cm.

Ruisseau des Arribets

Le ruisseau des Arribets d’une longueur de 4,5 km consiste en une dérivation du ruisseau le Caparrieu. Il est canalisé à Soues avant de rejoindre le ruisseau de Lapoutge au Nord de Soues.

« Ce ruisseau présente une largeur moyenne de 1,50m. L’écoulement est rapide et diversifié, à la fois dans le sens amont/aval (présence de petites chutes) et dans le sens transversal (veines de courant préférentielles laissant des zones calmes en bordure de berge) le substrat dominant est constitué de graviers ou de vase selon les stations d’observation » (source CACG, 2016 adapté)

Il présente une ripisylve en assez bon état, composée d’arbres de moyenne tige et de buissons.
CD65 – Aménagement de la liaison Tarbes-Bagnères de Bigorre – Section Soues / Arcizac Adour

Ruisseau des Arribets : canalisé à l’entrée de Soues (à gauche) et lit naturel au Sud de Soues (à droite)

- **Fossé de l’Egalité**

Il s’agit du fossé longeant la RD92 entre Soues et Barbazan-Debat. Il est admis dans le ruisseau de Lapoutge.

Il présente une profondeur de 50 cm, une largeur en tête de 1,70 m et une largeur en fond de 50 cm. Il est busé ponctuellement en Ø500. L’écoulement n’est pas permanent.

- **Ruisseau de Lapoutge**

Au même titre que le ruisseau des Arribets, il s’agit d’une dérivation du ruisseau le Capparieu. Il traverse la commune de Barbazan-Debat avant de rejoindre le Canal de décharge de l’Alaric à proximité de l’A64. Sa longueur est de 3,65 km.

« Le ruisseau de Lapoutge est un ruisseau étroit d’environ 1m de large qui s’écoule entre des berges basses occupées par une ripisylve généralement très dégradée ou absente alors remplacée par des ronciers.

Les faciès d’écoulement sont une alternance de séries de petits radiers à écoulement turbulent et de longs plats calmes à écoulement laminaire, parfois de petits profonds calmes. Le substrat est formé de petits galets (2 à 10 cm), sur fond de gravier, avec présence de limons accessoirement et de quelques vases organiques » (source CACG, 2016).

L’ensemble du projet s’inscrit dans le **bassin versant de l’ADOUR**.
II.1.2. Caractérisation des écoulements

Sur les 6 écoulements recensés dans l’espace concerné par le projet, deux n’ont pas d’écoulement permanent (fossé des Aulnes et fossé de l’Egalité). En cela, ces écoulements ne seront pas considérés comme des cours d’eau.

A l’opposé, les quatre autres écoulements (ruisseau d’Ordizan, fossé Est le long de la RD 8, ruisseau des Arribets et ruisseau de Lapoutge) sont permanents et pour les deux derniers ruisseaux associés à une ripisylve plus ou moins continue. On les considérera dès lors comme des cours d’eau.

II.1.3. Usages de l’eau

L’ensemble des cours d’eau et fossés présents sur le secteur appartient au « système Alaric » qui correspond à un réseau d’irrigation agricole prenant naissance à Pouzac par une prise d’eau sur l’Adour. Au fil de l’eau de ces ruisseaux et fossés, un pompage est effectué afin d’arroser les champs de maïs. Ces eaux irriguent aussi des prairies en partie par submersion.

Sur le fossé Est de la RD 8, des prélèvements d’eau sont réalisés à des fins domestiques de particuliers.

II.2. Contexte hydrologique et hydraulique

- Inondabilité

Le projet est situé hors zone inondable selon la Cartographie Informative des Zones Inondables (DREAL Midi-Pyrénées) et les PPR de Barbazan-Debat et Soues, excepté sa partie Nord, le long du ruisseau de Lapoutge.

Cette partie deviendra non inondable lors de l’aménagement de la zone d’expansion des crues liée à la ZAC « Parc de l’Adour ».

- Contexte hydraulique de l’Adour

 Source : DIREN Midi-Pyrénées – Banque Hydro

Les données hydrologiques relatives à l’Adour sont disponibles à la station de Tarbes (code hydro : Q0120060, située à environ 3,5 km du pont de la RD92 à Soues) sur la période 1968 – 2016, sont les suivantes :

 ✓ Superficie du bassin versant : 402 km²
 ✓ module annuel : 9,26 m³/s
 ✓ débit moyen mensuel minimum quinquennal (QMNA₅) : 2,5 m³/s
 ✓ débit de crue décennale : 77 m³/s

- Contexte hydraulique du Canal de l’Alaric et de ses canaux secondaires

Les débits prélevés moyens mensuels s’échelonnent entre 0,8 et 1,65 m³/s (données 1996-2006).

A Bernac-Dessus, une prise d’eau permet d’alimenter le Caparrieu, qui reçoit environ 1/3 du débit du Canal.

Au Sud-Est de Barbazan-Debat, le Caparrieu se sépare en deux branches, le ruisseau de Lapoutge et le ruisseau des Arribets. La répartition entre les deux branches s’effectue de manière équilibrée.
II.3. **QUALITÉ DES EAUX SUPERFICIELLES**

II.3.1. Définition du bon état

Le bon état des eaux est fixé pour les eaux de surface par l’arrêté ministériel du 25 janvier 2010 relatif aux méthodes et critères d’évaluation de l’état écologique, de l’état chimique et du potentiel écologique des eaux de surface selon le schéma suivant :

![Schéma de classification des états écologique et chimique](image)

Les limites de classes sont définies par le même arrêté :

<table>
<thead>
<tr>
<th></th>
<th>Très bon</th>
<th>Bon</th>
<th>Moyen</th>
<th>Médiocre</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBGN (*)</td>
<td>15</td>
<td>13</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>IBD (*)</td>
<td>17</td>
<td>14,5</td>
<td>10,5</td>
<td>6</td>
</tr>
<tr>
<td>IPR</td>
<td>7</td>
<td>16</td>
<td>25</td>
<td>36</td>
</tr>
<tr>
<td>Oxygène dissous (mg/l)</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Taux de saturation en oxygène (%)</td>
<td>90</td>
<td>70</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td>DBO₅ (mg/l)</td>
<td>3</td>
<td>6</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Carbone organique dissous (mg/l)</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Température des eaux cyprinicoles (°C)</td>
<td>24</td>
<td>25,5</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>Orthophosphates (mg/l)</td>
<td>0,1</td>
<td>0,5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Phosphate total (mg/l)</td>
<td>0,05</td>
<td>0,2</td>
<td>0,5</td>
<td>1</td>
</tr>
<tr>
<td>Ammonium (mg/l)</td>
<td>0,1</td>
<td>0,5</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Nitrites (mg/l)</td>
<td>0,1</td>
<td>0,3</td>
<td>0,5</td>
<td>1</td>
</tr>
<tr>
<td>Nitrates (mg/l)</td>
<td>10</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH minimum</td>
<td>6,5</td>
<td>6</td>
<td>5,5</td>
<td>4,5</td>
</tr>
<tr>
<td>pH maximum</td>
<td>8,2</td>
<td>9</td>
<td>9,5</td>
<td>10</td>
</tr>
</tbody>
</table>

(*) Cas général des très petits cours d’eau des coteaux aquitains

Pour les éléments physicochimiques non cités ci-dessus, le bon état peut être évalué à partir du SEQ-Eau, définissant les classes suivantes :
CD65 – Aménagement de la liaison Tarbes-Bagnères de Bigorre – Section Soues / Arcizac Adour

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Très bon</th>
<th>Bon</th>
<th>Moyen</th>
<th>Médiocre</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCO (mg/l)</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>80</td>
</tr>
<tr>
<td>Azote Kjeldhal (mg/l)</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>MES (mg/l)</td>
<td>25</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>Cadmium (µg/l) (*)</td>
<td>0,004</td>
<td>0,04</td>
<td>0,37</td>
<td>1,3</td>
</tr>
<tr>
<td>Cuivre (µg/l) (*)</td>
<td>0,1</td>
<td>1</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Zinc (µg/l) (*)</td>
<td>0,43</td>
<td>4,3</td>
<td>43</td>
<td>98</td>
</tr>
</tbody>
</table>

(*) Ces éléments sont cités dans la définition du bon état mais n’ont qu’une valeur de Norme de Qualité Environnementale (NQE) moyenne, difficilement exploitable. Les valeurs exposées ici sont celles du SEQ-Eau pour une eau de dureté moyenne.

II.3.2. L’Adour

- **État de la masse d’eau**

Le milieu récepteur le plus proche du point de rejet, défini comme masse d’eau au sens de la DCE est l’Adour FRFR237B (du confluent de la Douloustre au confluent de l’Ailhet).

Le tableau ci-après synthétise l’évaluation SDAGE 2016-2021 de l’état de cette masse d’eau selon les deux notions distinguées dans la DCE :

<table>
<thead>
<tr>
<th>FRFR237B : l’Adour du confluent la Douloustre au confluent de l’Ailhet</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETAT CHIMIQUE</td>
</tr>
<tr>
<td>POTENTIEL ECOLOGIQUE</td>
</tr>
</tbody>
</table>

- **Suivi de qualité**

L’Adour fait l’objet, dans le cadre du Réseau National de Bassin (RNB), d’un suivi de la qualité des eaux, à la station RNDE 05235500 (au pont Alstom entre Séméac et Tarbes, à 1 km environ de la confluence avec le Canal de décharge de l’Alaric).

Les évaluations de la qualité selon l’arrêté du 25 janvier 2010 relatif aux méthodes et critères d’évaluation de l’état écologique, de l’état chimique et du potentiel écologique des eaux de surface sont les suivantes :

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Evaluation 2014</th>
<th>Evaluation 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETAT PHYSICO-CHIMIQUE</td>
<td>BON</td>
<td>MOYEN</td>
</tr>
<tr>
<td>OXYGENE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbone organique</td>
<td>NON CLASSE</td>
<td>NON CLASSE</td>
</tr>
<tr>
<td>Taux de saturation en oxygène</td>
<td>BON</td>
<td>BON</td>
</tr>
<tr>
<td>DBOS</td>
<td>TRES BON</td>
<td>BON</td>
</tr>
<tr>
<td>Oxygène dissous</td>
<td>TRES BON</td>
<td>TRES BON</td>
</tr>
<tr>
<td>NUTRIMENTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonium</td>
<td>BON</td>
<td>BON</td>
</tr>
<tr>
<td>Nitrites</td>
<td>TRES BON</td>
<td>TRES BON</td>
</tr>
<tr>
<td>Nitrates</td>
<td>TRES BON</td>
<td>TRES BON</td>
</tr>
<tr>
<td>Phosphore total</td>
<td>TRES BON</td>
<td>MOYEN</td>
</tr>
<tr>
<td>Orthophosphates</td>
<td>TRES BON</td>
<td>TRES BON</td>
</tr>
<tr>
<td>ACIDIFICATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH min</td>
<td>TRES BON</td>
<td>TRES BON</td>
</tr>
<tr>
<td>pH max</td>
<td>BON</td>
<td>TRES BON</td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>TRES BON</td>
<td>TRES BON</td>
</tr>
</tbody>
</table>
Objectifs d’état de la masse d’eau

Les objectifs suivants sont définis pour la masse d’eau précédemment citée :

- Objectif état écologique : BON POTENTIEL 2015
- Objectif état chimique : BON ETAT 2015

<table>
<thead>
<tr>
<th>ETAT ECOLOGIQUE</th>
<th>BON</th>
<th>MOYEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETAT CHIMIQUE</td>
<td>NON CLASSE</td>
<td>NON CLASSE</td>
</tr>
</tbody>
</table>
I.3.3. Les canaux secondaires du Canal de l’Alaric

Il n’existe pas de suivi de la qualité du Canal de l’Alaric et de ses canaux secondaires.

L’état initial des canaux a donc été caractérisé à partir :

- De l’étude « Etat hydrobiologique initial, qualité physico-chimique, faune des invertébrés aquatiques, faune piscicole du ruisseau de Lapoutge » (SGS Multilab, 2003) ;

Il n’existe aucune étude concernant le ruisseau d’Ordizan.

- **Ruisseau de Lapoutge**

Selon la première étude, « les eaux automnales du ruisseau de Lapoutge présentent une physico-chimie caractéristique des petits cours d’eau du piémont pyrénéen, plus ou moins réalimentés par des rivières issues d’altitude (Adour).

Malgré l’étiage estival sévère de 2003, ces eaux sont fraîches, bien oxygénées, faiblement alcalines, modérément minéralisées (substrat sédimentaire alluvionnaire), typiquement piscicoles et assez productives au regard des différents paramètres analysés comme le pH, la dureté… Les teneurs en matières en suspension, chlorures et sulfates sont basses et habituelles. Les valeurs en carbone organique dissous, de produits phosphorés et azotés sont très faibles et témoignent pour la plupart de l’absence de pollution, sauf au niveau de l’azote Kjeldhal (2,2 mg/l N). Les très basses teneurs en hydrocarbures totaux et plomb prouvent l’absence de pollution issue des plateformes routières environnantes. La qualité de ces eaux devrait parfaitement convenir à un peuplement piscicole à base de salmonidés (absents), de cyprinidés et de cobitidés (présents). »

Les résultats des analyses physico-chimiques réalisées dans le cadre de cette étude le 30/09/2003 sont les suivants :

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>Unité</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Température</td>
<td>°C</td>
<td>15,4</td>
</tr>
<tr>
<td>Dioxygène dissous</td>
<td>mg/l</td>
<td>8,1</td>
</tr>
<tr>
<td>Saturation en dioxygène dissous</td>
<td>%</td>
<td>86</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>7,7</td>
</tr>
<tr>
<td>Ammonium</td>
<td>mg/l</td>
<td>< 0,04</td>
</tr>
<tr>
<td>Nitrites</td>
<td>mg/l</td>
<td>< 0,03</td>
</tr>
<tr>
<td>Nitrates</td>
<td>mg/l</td>
<td>5,8</td>
</tr>
<tr>
<td>Azote Kjeldhal</td>
<td>mg/l</td>
<td>2,2</td>
</tr>
<tr>
<td>Orthophosphates</td>
<td>mg/l</td>
<td>0,05</td>
</tr>
<tr>
<td>Phosphore total</td>
<td>mg/l</td>
<td>0,07</td>
</tr>
<tr>
<td>Matières en suspension</td>
<td>mg/l</td>
<td>< 2</td>
</tr>
</tbody>
</table>

- **Ruisseau des Arribets**

Selon la deuxième étude, « pour l’ensemble des paramètres analysés on ne détecte aucun signe de dégradation de la qualité des eaux. Tout au plus pouvons-nous signaler un léger dépassement des phosphates (PO4 et P Total) dans l’Arribets, traduisant vraisemblablement quelques rejets domestiques et qui font passer ce cours d’eau de la classe 1A (excellente) à la classe de qualité 1B (bonne). »
Les résultats des analyses physico-chimiques réalisées dans le cadre de cette étude en le 22/05/2006 sont les suivants :

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>Unité</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Température</td>
<td>°C</td>
<td>13,5</td>
</tr>
<tr>
<td>Dioxygène dissous</td>
<td>mg/l</td>
<td>9,8</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>8,1</td>
</tr>
<tr>
<td>Ammonium</td>
<td>mg/l</td>
<td>0,02</td>
</tr>
<tr>
<td>Nitrites</td>
<td>mg/l</td>
<td>0,04</td>
</tr>
<tr>
<td>Nitrites</td>
<td>mg/l</td>
<td>1,2</td>
</tr>
<tr>
<td>Azote Kjeldhal</td>
<td>mg/l</td>
<td>< 1</td>
</tr>
<tr>
<td>Orthophosphates</td>
<td>mg/l</td>
<td>0,22</td>
</tr>
<tr>
<td>Phosphore total</td>
<td>mg/l</td>
<td>0,13</td>
</tr>
<tr>
<td>Matières en suspension</td>
<td>mg/l</td>
<td>2,7</td>
</tr>
<tr>
<td>DCO</td>
<td>mg/l</td>
<td>< 4</td>
</tr>
<tr>
<td>DBOS</td>
<td>mg/l</td>
<td>0,5</td>
</tr>
</tbody>
</table>

L’étude du peuplement d’invertébrés a révélé une note IBGN de 12. Selon l’étude citée plus haut, « ces observations laissent supposer certaines dégradations du ruisseau des Arribets soit d’ordre physicochimique, soit au niveau des débits d’étéigae qui pourraient être très faible comme nous l’ont laissé entendre quelques riverains ».

Par ailleurs, l’étude physico-chimique menée cette fois en 2013 ne montre pas d’évolution négative des paramètres et donc de la qualité des eaux du ruisseau des Arribets qui sont aussi classées en 1B.
II.4. **Usages des eaux superficielles**

Le tableau ci-dessous synthétise l’état des lieux 2013 des pressions de cette masse d’eau.

<table>
<thead>
<tr>
<th>PRESSION PONCTUELLE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rejets de stations d’épurations domestiques</td>
<td>NON SIGNIFICATIVE</td>
</tr>
<tr>
<td>Débordements des déversoirs d’orage</td>
<td>NON SIGNIFICATIVE</td>
</tr>
<tr>
<td>Rejets de stations d’épurations industrielles (macro polluants)</td>
<td>SIGNIFICATIVE</td>
</tr>
<tr>
<td>Indice de danger « substances toxiques » global pour les industries</td>
<td>SIGNIFICATIVE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRESSION DIFFUSE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Azote diffus d’origine agricole</td>
<td>NON SIGNIFICATIVE</td>
</tr>
<tr>
<td>Pesticides</td>
<td>SIGNIFICATIVE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRELEVEMENTS D’EAU</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AEP</td>
<td>NON SIGNIFICATIVE</td>
</tr>
<tr>
<td>Industriels</td>
<td>NON SIGNIFICATIVE</td>
</tr>
<tr>
<td>Irrigation</td>
<td>SIGNIFICATIVE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALTERATIONS HYDROMORPHOLOGIQUES ET REGULATIONS DES ECOULEMENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Altération de la continuité</td>
<td>ELEVEE</td>
</tr>
<tr>
<td>Altération de l’hydrologie</td>
<td>MODEREE</td>
</tr>
<tr>
<td>Altération de la morphologie</td>
<td>ELEVEE</td>
</tr>
</tbody>
</table>

Le système de canaux de l’Alaric est utilisé principalement pour l’irrigation.

Nous n’avons à ce jour aucune donnée précise sur les usages d’irrigation. Ces éléments seront clarifiés dans le cadre de l’étude d’aménagement foncier.

En tout état de cause, le projet ne modifiera pas les usages puisque le réseau de canaux d’irrigation ainsi que leur alimentation seront maintenus.

II.5. **Peuplement piscicole**

- **Ruisseau de Lapoutge**

Selon l’étude « Etat hydrobiologique initial, qualité physico-chimique, faune des invertébrés aquatiques, faune piscicole du ruisseau de Lapoutge » (SGS Multilab, 2003), « le peuplement piscicole de ce cours d’eau est dominé en densité et biomasse par la loche franche devant le vairon, seules espèces présentes. Si la densité à l’hectare est significative (4 122 individus), la biomasse reste faible (16,2 kg) de par la petite taille des individus. Ces deux espèces font partie du cortège habituel qui accompagne la truite, absente ici, dans les ruisseaux de piémont (limite zone à truite – zone à ombre d’Huet). Si la population de loches est assez équilibrée (présence de toutes les classes de tailles avec de petites cohortes d’individus), celle des vairons semble déséquilibrée (très faible population dans les classes de tailles présentes).

La granulométrie du lit de ce ruisseau convient parfaitement à la colonisation et la reproduction de ces deux espèces, elle pourrait convenir aussi à celle des truites par endroit, si le débit était convenable.
comme en automne. Ce ruisseau de 1ère catégorie piscicole est géré par l’AAPPMA de Tarbes sous tutelle de la Fédération Départementale. Il est très peu pratiqué, non aleviné, non protégé, ne comporte aucune réserve de pêche. Il subirait des rejets industriels d’après la Fédération Départementale. »

- **Ruisseau des Arribets**

Selon l’« Etude hydrobiologique de l’Hournet et de l’Arribet » (FDAPPMA65, juin 2006), « le peuplement du cours d’eau est dominé par l’association vairon – goujon – loche franche, qui représentent plus de 95 % des abondances numériques et 77 à 100 % de la biomasse. C’est le vairon qui domine le peuplement, tant en densité qu’en biomasse.

L’échantillonnage de vairon, goujon et loche montre plusieurs groupes d’âge pour chaque espèce et dans chaque station, preuve que la reproduction s’effectue bien. Il est en outre à noter qu’aucun alevinage n’est effectué pour ces espèces.

La truite fario est présente, mais avec des abondances faibles. Une seule truite adulte a été capturée, les autres étant des truites âgées de moins de 2 ans (juvéniles 0+ et 1+). Comme la plupart des canaux du même type, ces cours d’eau constituent surtout des « nurseries » pour les truites, qui dévalent vers l’Adour au cours de leur première ou seconde année. Le cas de ce cours d’eau est similaire à de nombreux petits canaux – affluents de l’Adour, dont les capacités d’accueil pour les truites adultes sont réduites du fait de leur petite dimension, mais qui jouent un rôle important vis-à-vis du recrutement de la population des truites de l’Adour.

Le peuplement piscicole observé est conforme à la typologie du secteur et malgré sa petite taille, ce cours d’eau possède des potentialités piscicoles réelles. Son fonctionnement est en revanche un peu perturbé par des débits qui peuvent être extrêmement réduits en été, lors de l’irrigation.»

L’étude réalisée en 2013 aboutit dans l’ensemble à la même conclusion.

III. Caractérisation des eaux souterraines

III.1. Contexte géologique

Les études géologiques réalisées dans le cadre du projet (SOLETCO, janvier 1990 et février 1993) ont mis en évidence les faciès suivants :

- Remblais – terre végétale limoneuse ;
- Limons terreaux et argileux avec graviers, galets et blocs ;
- Sables grossiers (arènes) avec graviers, galets et blocs ;
- Blocs et galets dans matrice sableuse (arène).

La couverture végétale peut atteindre 60 cm en certains points. L’épaisseur des limons terreaux est de 50 cm en moyenne.

Selon la carte géologique au 50 000ème (feuille de Bagnères de Bigorre) du BRGM (Infoterre), le projet repose sur :

- Galets, graviers, sables (terrasse de l’aéroport d’Ossun et de Baudéan-Bagnères-Horgues)
- Alluvions récentes : galets, graviers, sables et limons
- Galets, graviers, sables (terrasse de Lézignan-Orincles-Juillan, terrasse de Hiis)
III.2. **CONTEXTE HYDROGEOLOGIQUE**

Le rapport d’étude géotechnique de janvier 1990 (SOLETCO) indique qu’aucune arrivée d’eau n’a été observée lors de leur intervention. Celle-ci ayant néanmoins eu lieu à la fin d’une période de sécheresse exceptionnelle.

Au Sud du giratoire de l’A64, des niveaux aquifères ont été mesurés à 7,5 m de profondeur.

Selon le BRGM (Infoterre), les masses d’eau souterraines présentes sont les suivantes :
- FRFG028 : Alluvions de l’Adour et de l’Echez, l’Arros, la Bidouze et la Nive ;
- FRFG082 : Sables, calcaires et dolomies de l’éocène-paléocène captif sud AG ;
- FRFG081 : Calcaires du sommet du crétaçé supérieur captif sud-aquitain ;
- FRFG091 : Calcaires de la base du crétaçé supérieur captif du sud du bassin aquitain ;
- FRFG080 : Calcaires du jurassique moyen et supérieur captif.

III.3. **USAGES DES EAUX SOUTERRAINES**

Eau potable

Les captages d’eau les plus proches du projet sont situés à Soues, à 1,5 km du projet.

Le puits de Soues alimente pour partie le SIAEP Adour-Coteaux (n°BSS : 10316 X 0021). Il constitue un puits d’appoint pour le Syndicat, qui utilise en principal la ressource de l’usine de Médous pour alimenter les 12 communes adhérentes. Le volume pompé est de 1 500 m³/j en moyenne. Il n’existe pas de périmètre de protection pour ce captage.

Le champ captant de Laloubère (n°BSS : 10316 X 0005) comporte 6 puits et alimente la ville de Tarbes. Il est implanté en rive gauche de l’Adour. Le volume journalier pompé est de 2 200 à 7 500 m³/j. Les périmètres de protection liés à ce captage sont présentés en annexe.

Dès lors qu’aucune infiltration n’est prévue dans le cadre du projet et qu’il est situé hors des périmètres de protection des captages, il n’existe pas de risque de pollution de la ressource captée du fait du rejet d’eaux pluviales du projet.

Eau industrielle

Alstom dispose d’un site industriel s’étant au Nord et au Sud de l’A64, le long de la RD8.

Il comporte 5 puits, dont un inutilisé, prélevant dans la nappe alluviale de l’eau destinée à un usage industriel ou sanitaire, non potable (sanitaires, réseau d’eau incendie, systèmes de refroidissement des ressources électriques, des plates-formes d’essais et des étuves).

Ces eaux sont rejetées après utilisation dans l’Adour, après traitement.
MILIEUX NATURELS

Source : DREAL Midi-Pyrénées

III.4. ZONES NATURELLES ET PROTECTIONS RÉGLEMENTAIRES

Le projet n’est concerné par aucun milieu naturel (ZNIEFF, ZICO, Natura 2000, réserve naturelle, parc naturel…). Cependant les milieux naturels suivants sont présents à proximité :

- Zone Natura 2000 « Vallée de l’Adour » FR7300889, concernant l’Adour et ses abords immédiats, à 600 m à vol d’oiseau du projet ;
- ZNIEFF de type 1 « l’Adour, de Bagnères à Barcelonne-du-Gers » 730010678, concernant également l’Adour et ses abords immédiats (au niveau du projet), à 600 m à vol d’oiseau du projet ;
- ZNIEFF de type 2 « Adour et ses milieux annexes » 730010670, à 600 m à vol d’oiseau du projet ;
- APPB « Adour de Lesponne, de l’Arize, du Tourmalet, du Garet, de Payolle, de Gripp, Adour jusqu’à Tarbes, ruisseau de Rimoula et affluents, Gaoube, Artigou, Oussouet, Gaill » FR380445, concernant l’Adour, à 700 m à vol d’oiseau du projet.

III.5. ESPÈCES PROTÉGÉES

Une étude préalable d’aménagement foncier a été réalisée dans le cadre du projet. Nous reprenons ici les conclusions du « volet environnement » (Bureau d’études ADRET, septembre 2012).

La zone d’étude concernée s’étend sur 307 ha, correspondant au secteur susceptible d’être impacté par le projet (Cf. carte ci-dessous).
III.5.1. Habitats d’espèces

Un habitat d’espèce correspond au domaine vital d’une espèce donnée, qu’elle soit animale ou végétale (zone de reproduction, zone d’alimentation, zone de chasse) ; il peut comprendre plusieurs habitats distincts réunissant les conditions physiques et biologiques nécessaires à l’existence de l’espèce considérée.

Les principaux habitats d’espèces recensés dans la zone d’étude sont identifiés dans le tableau ci-dessous :

<table>
<thead>
<tr>
<th>Habitat d’espèce</th>
<th>Intérêt patrimonial de l’habitat</th>
<th>Intérêt patrimonial de l’espèce</th>
<th>Intérêt patrimonial de l’habitat d’espèces</th>
<th>Espèces potentielles utilisant l’habitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aulnaie, Aulnaie-Frênaie, Saulaie</td>
<td>moyen à fort (aulnaie-frênaie)</td>
<td>moyen</td>
<td>fort</td>
<td>Amphibiens</td>
</tr>
<tr>
<td>Bois non mâtures : Chênaie, Chênaie-Frênaie, Frênaie</td>
<td>faible</td>
<td>faible</td>
<td>faible</td>
<td>Biodiversité générale (entomofaune, mammifères, avifaune)</td>
</tr>
<tr>
<td>Landes (ronciers, fourrés de Noisetiers)</td>
<td>faible</td>
<td>faible</td>
<td>faible</td>
<td>Biodiversité générale (entomofaune, mammifères, avifaune)</td>
</tr>
<tr>
<td>Ruisseaux</td>
<td>fort</td>
<td>moyen à fort</td>
<td>fort</td>
<td>Louvre (?), Odonates, Amphibiens, Truite fario, Lamproie de Planer, Reptiles…</td>
</tr>
<tr>
<td>Haies</td>
<td>moyen</td>
<td>faible</td>
<td>moyen</td>
<td>Biodiversité générale (entomofaune, mammifères, avifaune, reptiles)</td>
</tr>
<tr>
<td>Lisières boisées, haies, murets, talus</td>
<td>faible à moyen</td>
<td>faible à moyen</td>
<td>moyen</td>
<td>Hérisson, Lézard des murailles, Couleuvre verte et jaune, Vipère aspic…</td>
</tr>
<tr>
<td>Prés et pacages mésophiles</td>
<td>faible</td>
<td>faible</td>
<td>faible</td>
<td>Biodiversité générale</td>
</tr>
<tr>
<td>Prés et pacages méso-hygrophiles</td>
<td>moyen</td>
<td>moyen</td>
<td>moyen</td>
<td>Lépidoptères, Ardéidés, diversité botanique</td>
</tr>
<tr>
<td>Mosaïque d’habitats (champs cultivés, prairies, landes, bois)</td>
<td>faible</td>
<td>moyen</td>
<td>moyen</td>
<td>Rapaces : Milan noir, Milan royal, Buse variable, Faucon crécerelle…</td>
</tr>
</tbody>
</table>

III.5.2. Espèces

Nous ne reprenons ici que les conclusions de chaque groupe d’espèce.

✓ Coléoptères : l’enjeu de conservation est faible, compte-tenu du fait que les vieux arbres sont très peu nombreux dans la zone d’étude, et que ces 2 espèces (Grand Capricorne et Lucane Cerf-Volant) sont communes dans le Sud-Ouest de la France ;

✓ Lépidoptères : l’enjeu de conservation est faible (nombre restreint d’espèces, absence d’espèces patrimoniales). Le Cuivré des marais est absent de la zone d’étude ;

✓ Odonates : l’enjeu de conservation est faible (nombre restreint d’espèces, absence d’habitats d’espèces favorables, relatif éloignement de la zone d’étude vis-à-vis du fleuve Adour). Les 3 espèces remarquables citées dans le DOCOB du site Natura 2000 de l’Adour (Cordulie à corps fin, Gomphe de Graslin, Agrion de Mercure) sont probablement absents de la zone d’étude ;
✓ Reptiles et amphibiens : l’enjeu de conservation est faible en ce qui concerne les Amphibiens, en relation avec la quasi-absence de zones humides dans la zone d’étude ; il est également faible pour les Reptiles (les haies ainsi que l’ancienne voie ferrée et les quelques talus présents dans la zone d’étude constituent des habitats favorables, mais ces espèces sont communes). La Cistude d’Europe, mentionnée dans le site Natura 2000, est absente de la zone d’étude ;

✓ Oiseaux : le principal enjeu de conservation concerne les oiseaux de bocage, présents dans la zone d’étude, mais qui pourraient être impactés en cas de disparition des prés et des haies. Les espèces visées par la Directive Oiseaux ne devraient pas être impactées : le Milan Noir, le Milan Royal sont des oiseaux qui utilisent la zone d’étude comme territoire de chasse ;

✓ Mammifères : l’enjeu de conservation est assez fort pour les Chiroptères (Barbastelle, Petit et Grand Rhinolophes, Murin à oreilles échancrées) ; il est faible en ce qui concerne les autres Mammifères. Des 2 espèces remarquables (en dehors des Chauves-Souris) citées dans le DOCOB du site Natura 2000 Vallée de l’Adour (Desman des Pyrénées, Loutre d’Europe), le Desman est très probablement absent dans la zone d’étude, tandis que la Loutre est potentiellement présente dans les ruisseaux (principalement le Layet) coulant dans la zone d’étude ;

✓ Poissons, crustacés : les principaux enjeux de conservation concernent le Chabot, espèce qui vit dans les ruisseaux d’eaux fraîches bien oxygénées et la Lamproie de Planer, espèce fréquente en tête de bassin de nombreux cours d’eau français ;

✓ Flore : les principaux enjeux de conservation concernent la Scille Lis-Jacinthe et le Crocus d’automne, 2 déterminantes ZNIEFF.
B. ANALYSE DES IMPACTS DU PROJET SUR LE MILIEU

I. IMPACTS QUANTITATIFS

I.1. RISQUES D’INONDATION

Une fois la zone de sur-inondation prévue dans le cadre de la réalisation de la ZAC « Parc de l’Adour », le projet sera hors zone inondable selon la Cartographie Informative des Zones Inondables (DREAL Midi-Pyrénées) et les PPR des communes de Barbazan-Debat et de Soues, excepté en partie Nord, le long du ruisseau « La Poutge ».

De ce fait, le projet routier ne pourra ni représenter un obstacle significatif à l’écoulement de crues tant au niveau de l’aménagement prévu sur une portion du ruisseau Lapoutge que des merlons acoustiques prévus aux abords des habitations des communes de Barbazan-Debat et Soues (conformément au plan d’ensemble des mesures d’accompagnement présenté dans l’enquête préalable à la DUP), ni être menacé par d’éventuelles crues.

La cartographie ci-dessous, issue du PPRi de la commune de Soues, mentionne un aléa faible sur cette partie nord au niveau du ruisseau Lapoutge et pour des surfaces peu étendues.

En effet, le ruisseau de Lapoutge est une dérivation (l’autre dérivation étant faite sur le ruisseau des Arribets, plus à l’est, du ruisseau le Caparrieu qui lui-même reçoit des eaux du canal de l’Alaric par une
prise d’eau au niveau de Bernac Debat. Les écoulements partagés entre les différents cours d’eaux sont décroissants depuis le canal de l’Alaric et sont aussi contrôlables.

L’obstacle à l’écoulement des eaux du projet est donc très marginal. Le projet prend bien compte le PPRi de la commune de Soues.

Par ailleurs, Cette partie deviendra non inondable grâce à l’aménagement du bassin d’expansion des crues liée à la ZAC « Parc de l’Adour » qui est présenté ci-dessous.

Ce bassin, d’un volume total de 245 000 m³ pour une superficie de 7.5 ha concentrera à lui seul la zone d’aléas forts, en canalisant le ruisseau Lapoutge.

En ce qui concerne les merlons acoustiques, ceux-ci sont situés à au moins 200m du ruisseau et hors de l’aléa identifié comme faible. Ils ne pourront donc pas constituer un obstacle à l’écoulement des eaux.

Il est présenté en complément ci-dessous la superposition du projet routier RD8 (porté par le Département), le projet de la Zac Parc-Adour (dans lequel s’inscrit le bassin d’expansion des crues) et les limites des zones d’aléa fort et faible :
Avant aménagement du bassin d'expansion des crues :

Après aménagement du bassin d'expansion des crues :

En conclusion, le projet routier se retrouvera donc hors des zones d’aléas du PPRi de Soues. Il ne s’opposera pas aux crues sur ce secteur, et s’inscrit donc en cohérence avec les prescriptions du PPRi de Soues

I.2. DÉBITS GÉNÉRÉS PAR LE PROJET

Afin d’évaluer l’incidence quantitative du projet, les débits nominaux produits en situation actuelle et future peuvent être estimés par la méthode rationnelle.

\[Q = C \times I \times A \]

\[Q = \text{débit de pointe} \]

\[C = \text{coefficient de ruissellement} \]
\[I = \text{intensité pluviométrique (cf. A.1.2)} \]
\[A = \text{superficie du bassin-versant} \]

Les coefficients de ruissellement considérés sont les suivants :
- 1,0 sur la chaussée, les trottoirs, les pistes cyclables et les fossés imperméables ;
- 0,2 sur les surfaces perméables (espaces verts et accotements).

Les temps de concentration de chaque bassin versant ont été calculés selon la méthode préconisée dans le guide technique du SETRA « Assainissement routier » :

\[t = t_1 + t_2 \]
\[t = \text{temps de concentration} \]
\[t_2 = \text{temps nécessaire à l'eau de la plate-forme pour atteindre l'ouvrage de recueil} = 3 \text{ minutes} \]
\[t_2 = \text{temps mis par l'écoulement dans l'ouvrage sur une longueur} \ L \]

\[t_2 = \frac{L}{51 \times V} \]
\[L = \text{longueur de l'ouvrage (m)} \]
\[V = \text{vitesse à section pleine de l'ouvrage projeté (m/s)} \]

Ainsi, les temps de concentration sont les suivants :

<table>
<thead>
<tr>
<th>Bassin versant</th>
<th>L</th>
<th>V</th>
<th>Temps de concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>800 m</td>
<td>1,1 m/s</td>
<td>17 min</td>
</tr>
<tr>
<td>2 (partie busée)</td>
<td>150 m</td>
<td>1,3 m/s</td>
<td>(t_2 = 2) min</td>
</tr>
<tr>
<td>2 (partie fossé)</td>
<td>570 m</td>
<td>1,1 m/s</td>
<td>(t_2 = 10) min</td>
</tr>
<tr>
<td>3</td>
<td>225 m</td>
<td>1,2 m/s</td>
<td>(t_1 + t_2 = 15) min</td>
</tr>
<tr>
<td>4</td>
<td>1 585 m</td>
<td>1,0 m/s</td>
<td>34 min</td>
</tr>
<tr>
<td>5</td>
<td>1 280 m</td>
<td>0,8 m/s</td>
<td>34 min</td>
</tr>
<tr>
<td>6</td>
<td>90 m</td>
<td>1,2 m/s</td>
<td>4 min</td>
</tr>
<tr>
<td>7</td>
<td>1 580 m</td>
<td>0,9 m/s</td>
<td>37 min</td>
</tr>
</tbody>
</table>

La moyenne de ces temps de concentration est de 21 minutes. Nous utiliserons cette valeur pour pouvoir comparer les débits produits par chaque bassin versant.

Le tableau ci-après présente les débits nominaux produits en situation actuelle et future :

<table>
<thead>
<tr>
<th>Situation actuelle</th>
<th>Superficie</th>
<th>Coefficient de ruissellement</th>
<th>Débit produit (T = 10) ans</th>
<th>Débit produit (T = 20) ans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bassin versant 1</td>
<td>2,24 ha</td>
<td>0,20</td>
<td>80 l/s</td>
<td>95 l/s</td>
</tr>
<tr>
<td>Bassin versant 2</td>
<td>7,51 ha</td>
<td>0,20</td>
<td>275 l/s</td>
<td>320 l/s</td>
</tr>
<tr>
<td>Bassin versant 3</td>
<td>0,77 ha</td>
<td>0,20</td>
<td>30 l/s</td>
<td>35 l/s</td>
</tr>
<tr>
<td>Bassin versant 4</td>
<td>16,28 ha</td>
<td>0,20</td>
<td>595 l/s</td>
<td>690 l/s</td>
</tr>
<tr>
<td>Bassin versant 5</td>
<td>11,08 ha</td>
<td>0,20</td>
<td>405 l/s</td>
<td>470 l/s</td>
</tr>
<tr>
<td>Bassin versant 6</td>
<td>0,44 ha</td>
<td>0,20</td>
<td>15 l/s</td>
<td>20 l/s</td>
</tr>
<tr>
<td>Bassin versant 7</td>
<td>12,44 ha</td>
<td>0,20</td>
<td>455 l/s</td>
<td>525 l/s</td>
</tr>
<tr>
<td>Bassin versant 1</td>
<td>2,24 ha</td>
<td>0,36</td>
<td>3 350 l/s</td>
<td>3 880 l/s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Situation future sans mesures compensatoires</th>
<th>Superficie</th>
<th>Coefficient de ruissellement</th>
<th>Débit produit (T = 10) ans</th>
<th>Débit produit (T = 20) ans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bassin versant 1</td>
<td>2,24 ha</td>
<td>0,56</td>
<td>230 l/s</td>
<td>265 l/s</td>
</tr>
<tr>
<td>Bassin versant 2</td>
<td>7,51 ha</td>
<td>0,34</td>
<td>465 l/s</td>
<td>540 l/s</td>
</tr>
<tr>
<td>Bassin versant 3</td>
<td>0,77 ha</td>
<td>0,52</td>
<td>75 l/s</td>
<td>85 l/s</td>
</tr>
<tr>
<td>Bassin versant 4</td>
<td>16,28 ha</td>
<td>0,31</td>
<td>920 l/s</td>
<td>1 070 l/s</td>
</tr>
<tr>
<td>Bassin versant 5</td>
<td>11,08 ha</td>
<td>0,36</td>
<td>730 l/s</td>
<td>845 l/s</td>
</tr>
</tbody>
</table>
I.3. **ÉCOULEMENTS LORS D’UN ÉVÉNEMENT EXCEPTIONNEL**

Les fossés de collecte des eaux de ruissellement présenteront une capacité suffisante pour faire transiter les débits nominaux décennaux, voire centennaux dans la majorité des cas.

Lors d’un événement exceptionnel, les débits acceptés par le réseau seront admis dans les bassins de rétention et seront surversés au milieu naturel. Ils n’occasionneront donc pas de désordres sur le projet ou sur les zones proches du projet.

Les flux générés par un débordement du réseau sont schématisés sur la planche 4.

Au vu de ces flux, et considérant que les zones de débordement ne sont pas urbanisées, les écoulements ne présenteront pas de menace pour les riverains lors d’un événement exceptionnel.

Concernant les bassins de rétention (dimensionnés pour une période de retour de 10 ans), lors d’un événement exceptionnel, la surverse jouera son rôle et absorbera les débits supplémentaires.

Dans le cas éventuel où la surverse ne serait plus en état de jouer son rôle, nous avons calculé les débits qui seraient surversés :

<table>
<thead>
<tr>
<th>Bassin</th>
<th>Débit surversé</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>185 l/s</td>
</tr>
<tr>
<td>2</td>
<td>365 l/s</td>
</tr>
<tr>
<td>3</td>
<td>50 l/s</td>
</tr>
<tr>
<td>4</td>
<td>740 l/s</td>
</tr>
<tr>
<td>5</td>
<td>530 l/s</td>
</tr>
<tr>
<td>6</td>
<td>45 l/s</td>
</tr>
<tr>
<td>7</td>
<td>715 l/s</td>
</tr>
</tbody>
</table>

Les zones de débordement sont schématisées sur la planche 4.

Notons que les réseaux présents dans les trémies sont suffisamment dimensionnés pour une période de retour de 100 ans. Les bassins de rétention à proximité (bassin 1 et bassin 2) ne déborderont pas vers ces trémies au vu de la topographie du terrain.
I.4. **POMPAGE DANS LA NAPPE SOUTERRAINE**

L’aménagement des deux passages inférieurs de l’opération nécessitera potentiellement le pompage de la nappe souterraine pour mettre hors d’eau la zone de chantier.

Ces deux passages inférieurs nécessiteront des travaux à 8 m de profondeur environ. Il faudra donc abaisser la nappe à environ 9 m de profondeur.

Le Département a pris contact avec le syndicat d’eau de l’Alaric qui n’a pas d’informations récentes à nous communiquer concernant le niveau de la nappe dans le secteur.

A ce stade des études et en l’absence de données bibliographiques hydrauliques récentes complémentaires sur le secteur, le débit estimé nécessaire au rabattement de la nappe a été évalué sur la base des hypothèses suivantes :

- Pompage dans l’horizon « blocs et galets dans matrice sableuse », identifié dans l’étude géologique (SOLETCO, février 1993)
- Perméabilité de cet horizon : 10^{-3} m/s (hypothèse prise en l’absence de mesures de perméabilité)
- Présence de la nappe à -7,50 m, comme identifié au Sud de l’A64. L’étude géologique n’a en effet pas observé de venues d’eau lors des investigations au niveau des passages inférieurs (après un contexte particulièrement sec), mais des niveaux aquifères ont été identifiés au Sud de l’A64 (SOLETCO, janvier 1990).
- Présence du substratum à -10 m (en l’absence de coupe géologique l’identifiant)
- Rayon d’action du puits : 30 m
- Puits de 1 m de diamètre

Le débit de pompage peut être, dans ces conditions hypothétiques, estimé à l’aide de la formule suivante :

\[Q = \pi K \frac{h^2 - z_0^2}{\ln\left(\frac{R}{r}\right)} \]

Avec :

- \(K_s \) : perméabilité du sol (m/s)
- \(h = \) hauteur de nappe par rapport au substratum (m)
- \(z_0 = \) hauteur constante recherchée dans le puits par rapport au substratum (m)
- \(R = \) rayon d’action du puits (m)
- \(r = \) rayon du puits (m)

Soit :

\[Q = \pi \times 10^{-3} \times \frac{2.5^2 - 1^2}{\ln\left(\frac{30}{1}\right)} = 4.8 l/s = 17 m^3/h \]

Ce débit sera pompé temporairement, le temps des travaux de passages inférieurs, et sera restitué au milieu naturel (ruisseau d’Ordizan ou fossé Est longeant la RD8).

Notons que le débit calculé ci-dessus reste faible (5 l/s) et qu’il pourra donc être absorbé facilement par les deux exutoires cités ci-dessus (capacité des busages : 580 et 170 l/s respectivement, le rejet représente donc 0,9 à 2,9 % de la capacité des busages).

En complément, il est rappelé que la réalisation de ces ouvrages nécessitera au préalable l’élaboration d’études géotechniques spécifiques qui permettront d’affiner à la fois la nature des sols et les niveaux de la nappe phréatique. Si les résultats de cette étude géotechnique montrent des écarts notables avec les hypothèses prises lors de l’élaboration du dossier loi sur l’eau, les services techniques du Département en informeront les services instructeurs de la Préfecture.
II. IMPACTS QUALITATIFS

Une zone urbanisée constitue une source potentielle de pollution par le biais :
✓ Des rejets par temps de pluie du système d’assainissement pluvial, qui apportent une pollution dite chronique résultant du lessivage des sols,
✓ D’éventuelles pollutions accidentelles résultant par exemple d’un déversement de matière dangereuse sur la voirie.

La gestion des eaux pluviales projetée ne s’appuyant sur aucun procédé d’infiltration, le projet n’aura ainsi aucune incidence particulière sur la qualité des eaux souterraines.

Aussi les éléments développés ci-après traitent uniquement de l’impact de la pollution sur les eaux superficielles.

II.1. POLLUTION CHRONIQUE

II.1.1. Principe de calcul de la pollution chronique

La pollution chronique correspond à la pollution entraînée par lessivage des surfaces urbanisées lors d’événements pluvieux (matières en suspension, matières oxydables, hydrocarbures, micropolluants...). Deux types de pollution chronique peuvent être considérés : d’une part les effets cumulatifs et d’autre part les effets de choc.

✓ Les effets cumulatifs : les déversements répétés de matières en suspension et l’adsorption de certains polluants (toxiques, solides, nutriments...) au sein de ces sédiments peut être un facteur contribuant à la dégradation du milieu naturel. Ainsi, par définition les effets cumulatifs s’opèrent sur de longues périodes.

✓ Les effets de choc : lors d’orages sur les secteurs imperméabilisés, le ruissellement des eaux de pluie peut amener des quantités non négligeables de polluants dans le milieu naturel sur un court laps de temps, notamment après une longue période de temps sec (concentrations importantes des eaux en polluants). En général, un épisode pluvieux de fréquence annuelle apporte environ 5 à 10% de la masse totale annuelle. Ainsi, des effets de chocs peuvent être dus à une augmentation brutale de la concentration d’un produit toxique, de la turbidité, des colonies bactériennes... ou à une chute du taux d’oxygène dissous contenu dans l’eau.

Dans les deux cas, on considère que la pollution est mobilisée uniquement sur la chaussée (6,5 ha) et que le débit du rejet est le cumul des débits de fuite des ouvrages de rétention (172 l/s).

Compte tenu de l’ouvrage de rétention (bassin de rétention) et du linéaire de cours d’eau entre le rejet de l’opération et l’Adour, qui favorisent la décantation et donc un abattement de ces pollutions, les charges nettes en sortie d’opération peuvent s’obtenir en considérant les taux d’abattement suivants (SETRA – Calcul des charges de pollution chronique des eaux de ruissellement issues des plates-formes routières – juillet 2006) :

<table>
<thead>
<tr>
<th></th>
<th>MES</th>
<th>DCO</th>
<th>Cu, Cd, Zn</th>
<th>Hc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lié aux fossés enherbés</td>
<td>65 %</td>
<td>50 %</td>
<td>65 %</td>
<td>50 %</td>
</tr>
<tr>
<td>Lié au bassin</td>
<td>85 %</td>
<td>75 %</td>
<td>80 %</td>
<td>65 %</td>
</tr>
</tbody>
</table>

Le paramètre hydrocarbure n’étant pas pris en compte dans la grille d’appréciation, nous avons retenu les critères fixés par la directive du 16 juin 1975 relative à la qualité des eaux douces utilisables pour la production alimentaire (autorisant une teneur inférieure à 0,05 mg/l pour l’usage « eau potable »)

La qualité initiale considérée pour le milieu récepteur est le milieu de classe de son objectif d’état.

Ainsi, suite au rejet des eaux pluviales du projet, la concentration finale dans le milieu récepteur peut être obtenue par le calcul de dilution suivant (selon « Calcul des charges de pollution chronique des eaux de ruissellement issues des plate-formes routières », SETRA, juillet 2006):

\[
C_f = \frac{C_i \cdot Q_{\text{milieu}} + C_{\text{rejet}} \cdot Q_{\text{rejet}}}{Q_{\text{milieu}} + Q_{\text{rejet}}}
\]

\[
C_i \text{ (mg/l)} = \text{concentration initiale du milieu récepteur}
\]

\[
C_f \text{ (mg/l)} = \text{concentration finale du milieu récepteur}
\]

\[
Q_{\text{milieu}} \text{ (l/s)} = \text{débit du milieu récepteur}
\]

\[
C_{\text{rejet}} \text{ (mg/l)} = \text{concentration du rejet}
\]

\[
Q_{\text{rejet}} \text{ (l/s)} = \text{débit du rejet}
\]

\[
C_a = Cu \times \frac{T}{1000} \times S
\]

\[
C_a \text{ (kg)} = \text{charge annuelle}
\]

\[
Cu \text{ (kg/ha)} = \text{charge unitaire annuelle pour 1000 véhicules par jour}
\]

\[
T \text{ (véhicules/jour)} = \text{trafic global}
\]

\[
S \text{ (ha)} = \text{surface imperméabilisée}
\]

La charge unitaire annuelle pour 1 000 véhicules par jour est définie suivant le tableau suivant :

<table>
<thead>
<tr>
<th>Site</th>
<th>Paramètre</th>
<th>MES</th>
<th>DCO</th>
<th>Zn</th>
<th>Cu</th>
<th>Cd</th>
<th>Hc totaux</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ouvert</td>
<td>Cu (kg/ha)</td>
<td>40</td>
<td>40</td>
<td>0,4</td>
<td>0,02</td>
<td>0,002</td>
<td>0,6</td>
</tr>
<tr>
<td>Restreint</td>
<td>Cu (kg/ha)</td>
<td>60</td>
<td>60</td>
<td>0,2</td>
<td>0,02</td>
<td>0,001</td>
<td>0,9</td>
</tr>
</tbody>
</table>

L’ensemble du projet correspond à un site ouvert, excepté le linéaire bordé de merlons du bassin versant 7. De manière défavorable, il est considéré que le bassin versant 7 entier est en site restreint.

La concentration du rejet pour les effets cumulatifs est la suivante :

\[
C_{\text{rej}} = \frac{Ca(1-t)}{9 \times S \times H}
\]

\[
H \text{ (m)} = \text{hauteur de pluie moyenne annuelle}
\]

\[
t = \text{taux d’abattement des ouvrages}
\]

La concentration du rejet pour les effets de chocs est la suivante :

\[
C_{\text{rej}} = \frac{2.3 \times Ca(1-t)}{10 \times S}
\]

Le trafic pris en compte pour les calculs est de 8 400 véhicules/jour, ce qui correspond à la prévision de trafic 2035.
II.1.2. Projet en site ouvert

Cela concerne tous les bassins versants excepté le n°7. La superficie de chaussée est donc de 4,7 ha et le débit de rejet de 135 l/s.

- **Effets cumulatifs**

La pluie à prendre en compte pour les effets cumulatifs est la hauteur moyenne annuelle des précipitations (1 047 mm à Tarbes).

Le tableau ci-dessous présente les charges annuelles et les concentrations de rejet lors d’un événement critique à effet cumulatif :

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Charge annuelle Ca (kg)</th>
<th>Concentration du rejet (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MES</td>
<td>1 580</td>
<td>1,87</td>
</tr>
<tr>
<td>DCO</td>
<td>1 580</td>
<td>4,46</td>
</tr>
<tr>
<td>Zn</td>
<td>15,8</td>
<td>0,025</td>
</tr>
<tr>
<td>Cu</td>
<td>0,79</td>
<td>0,0013</td>
</tr>
<tr>
<td>Cd</td>
<td>0,079</td>
<td>0,00013</td>
</tr>
<tr>
<td>Hc totaux</td>
<td>23,69</td>
<td>0,094</td>
</tr>
</tbody>
</table>

Le tableau ci-dessous présente les concentrations initiales et finales (en tenant compte des effets de dilution avec Module annuel Adour = 9,26 m³/s et débit rejet : 135 l/s) du milieu récepteur lors d’un événement critique :

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Concentration initiale du cours d’eau</th>
<th>Concentration finale du cours d’eau</th>
<th>Borne supérieure de l’objectif de qualité</th>
</tr>
</thead>
<tbody>
<tr>
<td>MES</td>
<td>37,50</td>
<td>36,99</td>
<td>50</td>
</tr>
<tr>
<td>DCO</td>
<td>25,00</td>
<td>24,71</td>
<td>30</td>
</tr>
<tr>
<td>Zn</td>
<td>0,0024</td>
<td>0,0027</td>
<td>0,0043</td>
</tr>
<tr>
<td>Cu</td>
<td>0,0006</td>
<td>0,0006</td>
<td>0,001</td>
</tr>
<tr>
<td>Cd</td>
<td>0,00002</td>
<td>0,0002</td>
<td>0,00004</td>
</tr>
<tr>
<td>Hc totaux</td>
<td>0,025</td>
<td>0,026</td>
<td>0,05</td>
</tr>
</tbody>
</table>

Les précédents calculs révèlent une incidence limitée du projet sur la qualité du milieu récepteur, n’entrant pas de dépassement des valeurs seuils correspondant à l’objectif de bon état.

- **Effets de choc**

Le tableau ci-dessous présente les charges annuelles et les concentrations du rejet lors d’un événement critique à effet de choc :

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Charge annuelle Ca (kg)</th>
<th>Concentration du rejet (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MES</td>
<td>1 580</td>
<td>4,06</td>
</tr>
<tr>
<td>DCO</td>
<td>1 580</td>
<td>9,66</td>
</tr>
<tr>
<td>Zn</td>
<td>15,8</td>
<td>0,054</td>
</tr>
<tr>
<td>Cu</td>
<td>0,79</td>
<td>0,0027</td>
</tr>
<tr>
<td>Cd</td>
<td>0,079</td>
<td>0,00027</td>
</tr>
<tr>
<td>Hc totaux</td>
<td>23,69</td>
<td>0,203</td>
</tr>
</tbody>
</table>
Le tableau ci-dessous préside les concentrations initiales et finales (en tenant compte des effets de dilution avec QMNA5 Adour = 2,5 m³/s et débit rejet : 135 l/s) du milieu récepteur lors d’un événement critique.

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Concentration initiale du cours d’eau</th>
<th>Concentration finale du cours d’eau</th>
<th>Borne supérieure de l’objectif de qualité</th>
</tr>
</thead>
<tbody>
<tr>
<td>MES</td>
<td>37,50</td>
<td>35,79</td>
<td>50</td>
</tr>
<tr>
<td>DCO</td>
<td>25,00</td>
<td>24,21</td>
<td>30</td>
</tr>
<tr>
<td>Zn</td>
<td>0,0024</td>
<td>0,0050</td>
<td>0,0043</td>
</tr>
<tr>
<td>Cu</td>
<td>0,0006</td>
<td>0,0007</td>
<td>0,001</td>
</tr>
<tr>
<td>Cd</td>
<td>0,00002</td>
<td>0,000035</td>
<td>0,000040</td>
</tr>
<tr>
<td>Hc totaux</td>
<td>0,025</td>
<td>0,034</td>
<td>0,050</td>
</tr>
</tbody>
</table>

Les précédents calculs révèlent une incidence limitée du projet sur la qualité du milieu récepteur, n’entraînant pas de dépassement des valeurs seuils correspondant à l’objectif de bon état, excepté concernant le paramètre Zinc.

Néanmoins, il faut garder à l’esprit l’ensemble des hypothèses pessimistes prises pour ces calculs :

- Les calculs ont été menés en considérant un débit d’étiage mensuel sec de récurrence 5 ans en concomitance avec un événement pluvieux de pointe
- Le volume d’eau lié à l’événement pluvieux de pointe n’a pas été pris en compte dans le calcul de dilution
- Aucun abattement des charges polluantes entre le rejet et la masse d’eau n’a été pris en compte (malgré le linéaire important de ruisseau)

Il s’agit de plus ici d’un événement pluvieux de pointe et donc d’un dépassement momentané du seuil, qui n’entraînera pas sur le long terme un déclassement du cours d’eau.

En complément, il est important de rappeler que les émissions de Zinc proviennent de la combustion des carburants. Le gouvernement entend en finir avec la commercialisation des voitures roulant à l’essence ou au gazole en France d’ici 2040, ce qui devrait donc minimiser les conséquences de l’effet de choc, déjà pénalisant par construction.

Il a donc été pris pour parti de ne pas ajouter de traitement supplémentaire à la suite des bassins de rétention, la nécessité ne concernant que le Zinc et les incidences technico-financières non négligeables.

Nota : il apparaît peu logique que la concentration finale des paramètres MES et DCO soit inférieure pour un effet de choc que pour un effet cumulatif étant donné la différence de débit du milieu récepteur considéré (9,26 m³/s pour les effets cumulatifs ; 2,5 m³/s pour les effets de choc). Cela est dû au fait que la concentration du milieu amont est bien supérieure à celle du rejet de la plateforme routière pour ces paramètres. A ce titre, l’influence du projet est très faible en matière de concentration (rapport de 1 à 200 entre les 2). En matière de débit, l’influence est négligeable pour les effets cumulatifs (rapport de 1 à 54) mais pas pour les effets de choc (rapport de 1 à 15). Ainsi, une concentration équivalente dans un rapport de débit plus important donne une concentration plus faible pour les effets de choc.

Ce n’est pas le cas pour les autres paramètres car la concentration du rejet est bien plus importante que celle du milieu amont.

Il.1.3. Projet en site restreint

Cela concerne le bassin versant n°7. La superficie de chaussée est donc de 1,8 ha et le débit de rejet de 37 l/s.
- **Effets cumulatifs**

La pluie à prendre en compte pour les effets cumulatifs est la hauteur moyenne annuelle des précipitations (1 047 mm à Tarbes).

Le tableau ci-dessous présente les charges annuelles et les concentrations de rejet lors d’un évènement critique à effet cumulatif :

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Charge annuelle Ca (kg)</th>
<th>Concentration du rejet (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MES</td>
<td>907</td>
<td>2,81</td>
</tr>
<tr>
<td>DCO</td>
<td>907</td>
<td>6,69</td>
</tr>
<tr>
<td>Zn</td>
<td>3,0</td>
<td>0,012</td>
</tr>
<tr>
<td>Cu</td>
<td>0,30</td>
<td>0,0013</td>
</tr>
<tr>
<td>Cd</td>
<td>0,015</td>
<td>0,00006</td>
</tr>
<tr>
<td>Hc totaux</td>
<td>13,6</td>
<td>0,140</td>
</tr>
</tbody>
</table>

Le tableau ci-dessous présente les concentrations initiales et finales (en tenant compte des effets de dilution avec Module annuel Adour = 9,26 m³/s et débit rejet : 37 l/s) du milieu récepteur lors d’un événement critique.

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Concentration initiale du cours d’eau</th>
<th>Concentration finale du cours d’eau</th>
<th>Borne supérieure de l’objectif de qualité</th>
</tr>
</thead>
<tbody>
<tr>
<td>MES</td>
<td>37,50</td>
<td>37,36</td>
<td>50</td>
</tr>
<tr>
<td>DCO</td>
<td>25,00</td>
<td>24,93</td>
<td>30</td>
</tr>
<tr>
<td>Zn</td>
<td>0,0024</td>
<td>0,0024</td>
<td>0,0043</td>
</tr>
<tr>
<td>Cu</td>
<td>0,0006</td>
<td>0,0006</td>
<td>0,001</td>
</tr>
<tr>
<td>Cd</td>
<td>0,00002</td>
<td>0,00002</td>
<td>0,00004</td>
</tr>
<tr>
<td>Hc totaux</td>
<td>0,025</td>
<td>0,025</td>
<td>0,05</td>
</tr>
</tbody>
</table>

Les précédents calculs révèlent une incidence limitée du projet sur la qualité du milieu récepteur, n’entraînant pas de dépassement des valeurs seuils correspondant à l’objectif de bon état.

- **Effets de choc**

Le tableau ci-dessous présente les charges annuelles et les concentrations du rejet lors d’un évènement critique à effet de choc :

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Charge annuelle Ca (kg)</th>
<th>Concentration du rejet (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MES</td>
<td>540</td>
<td>6,09</td>
</tr>
<tr>
<td>DCO</td>
<td>540</td>
<td>14,49</td>
</tr>
<tr>
<td>Zn</td>
<td>1,8</td>
<td>0,027</td>
</tr>
<tr>
<td>Cu</td>
<td>0,18</td>
<td>0,0027</td>
</tr>
<tr>
<td>Cd</td>
<td>0,009</td>
<td>0,00014</td>
</tr>
<tr>
<td>Hc totaux</td>
<td>8,1</td>
<td>0,304</td>
</tr>
</tbody>
</table>

Le tableau ci-dessous présente les concentrations initiales et finales (en tenant compte des effets de dilution avec QMNA5 Adour = 2,5 m³/s et débit rejet : 37 l/s) du milieu récepteur lors d’un événement critique.

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Concentration initiale du cours d’eau</th>
<th>Concentration finale du cours d’eau</th>
<th>Borne supérieure de l’objectif de qualité</th>
</tr>
</thead>
<tbody>
<tr>
<td>MES</td>
<td>37,50</td>
<td>37,04</td>
<td>50</td>
</tr>
<tr>
<td>DCO</td>
<td>25,00</td>
<td>24,85</td>
<td>30</td>
</tr>
<tr>
<td>Zn</td>
<td>0,0024</td>
<td>0,0027</td>
<td>0,0043</td>
</tr>
</tbody>
</table>
Les précédents calculs révèlent une incidence limitée du projet sur la qualité du milieu récepteur, n'entraînant pas de dépassement des valeurs seuils correspondant à l'objectif de bon état.

II.2. POLLUTION ACCIDENTELLE

Afin de permettre le piégeage d’une pollution accidentelle éventuelle, consécutive à un accident de circulation au cours duquel sont déversées des matières polluantes voire dangereuses, un volume mort sera aménagé en fond de chaque bassin.

Ce volume mort présentera un volume de 50 m³, situé sous le fil d’eau de sortie des bassins et ne sera donc pas vidangé. Il permet le piégeage d’une pollution accidentelle ainsi que la dilution des pollutions saisonnières dues aux sels de déverglaçage. Une vanne manuelle sera mise en place au niveau de l’orifice de régulation afin de pouvoir piéger la pollution même en temps de pluie.
III. **INCIDENCE VIS-A-VIS DE LA ZONE NATURA 2000 LA PLUS PROCHE**

III.1. DESCRIPTION DU PROJET

III.1.1. Nature du projet

Le projet consiste en la déviation de la RD 8 entre l’échangeur autoroutier Tarbes-Est à Soues et Arcizac-Adour, soit environ 6 km d’aménagement.

III.1.2. Localisation et cartographie

- Planches 1 – Description générale du projet
- Planches 3 – Contexte hydrographique

Le projet est situé dans le département des Hautes-Pyrénées, entre les communes de Soues et d’Arcizac-Adour.

Il n’est pas situé en zone Natura 2000. La zone Natura 2000 la plus proche est la « Vallée de l’Adour » FR7300889, située à 600 m environ à vol d’oiseau du projet. Cette zone constitue Site d’Importance Communautaire (SIC) dans lequel 19 espèces d’intérêt communautaire sont recensées.

Parmi ces espèces, la portion du site « vallée de l’Adour » proche de l’aménagement de la liaison Tarbes-Bagnères de Bigorre (Cf. carte) renferme potentiellement 2 mammifères (Loutre et Desman) hors chiroptères. Ces derniers sont représentés par 4 espèces (Grand et Petit Rhinolophe, Barbastelle et Murin à oreille échancrées). 3 Odonates (Cordulie à corps fin, Agrion de Mercure et Gomphe de Graslin), 2 Coléoptères (Grand capricorne et Lucane cerf-volant) et 2 Lépidoptères (Cuivré des marais et Ecaille chinée) ainsi que 4 Agnathes et Poissons (Lamproie de Planer et marine, Toxostome et Chabot). La Cistude et le Fluteau nageant sont absents de cette partie du site Natura 2000.

Les principaux habitats d’espèces de la zone d’aménagement ont été recensés précédemment (Cf. page 33 du document) ainsi que les enjeux pour les différentes espèces (Cf. page 34).
III.1.3. Durée prévisible et période envisagée des travaux

Le Département des Hautes-Pyrénées a déjà réalisé le giratoire à l’intersection entre la RD292 et la future RD8 sur la commune de Barbazan-Debat.

La programmation des travaux est étroitement liée aux contraintes suivantes :
- A l’obtention des autorisations administratives ;
- A la capacité financière du Département, liée à l’évolution des dotations de l’Etat,
- Au dévoiement des différents réseaux présents tout au long de l’itinéraire routier, notamment TIGF,
- A l’avancement des études techniques et au lancement des différents marchés de travaux.

Néanmoins, la programmation des travaux devra impérativement prendre en compte les contraintes environnementales induites par le calendrier. A cet effet et à titre d’exemple, les travaux dans un cours d’eau ne pourront pas être autorisés entre Novembre de l’année N et fin Mars de l’année N+1.

A titre informatif, et en complément du planning prévisionnel des travaux routiers déjà présenté plus haut, la durée prévisible et estimable à ce jour des travaux est la suivante :
- Contournement Nord de Soues (partie Nord du projet de RD8) : Mi 2021 à Mi 2022
- Partie centrale et Sud du projet routier : Mi 2022 à Mi 2024
III.1.4. Budget

Le coût prévisionnel global de l’opération (niveau AVP) est de 13 190 000 €.

III.1.5. Entretien / fonctionnement / rejet

Le projet prévoit le rejet d’eaux pluviales :
✓ Au ruisseau d’Ordizan ;
✓ Au fossé des Aulnes ;
✓ Aux fossés longeant la RD8 ;
✓ Au ruisseau des Arribets ;
✓ Au ruisseau de Lapoutge.

Ceux-ci sont tous admis dans l’Adour de manière plus ou moins directe.

III.2. État des lieux de la zone d’influence

Le projet n’est situé en aucune zone protégée (Réserve naturelle, APB, site classé, site inscrit, ZNIEFF...).

<table>
<thead>
<tr>
<th>TYPE D’HABITAT NATUREL</th>
<th>Nom et/ou code de l’habitat</th>
<th>Présent (O/N) dans la zone d’influence du projet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habitats d’intérêt communautaire cités dans le FSD</td>
<td>91E0* Forêts alluviales 91FO Forêts mixtes 3270 Rivières avec berges vaseuses 3260 Rivières des étages planitiales à montagnard 3150 Plans d’eau eutrophes 6510 Prairies maigres de fauche 6430 Mégaphorbiales hygrophiles</td>
<td>N O O N</td>
</tr>
<tr>
<td>Zones humides</td>
<td>L’Adour</td>
<td>O</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ESPÈCE</th>
<th>Nom de l’espèce</th>
<th>Présent (O/N) dans la zone d’influence du projet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espèces d’intérêt communautaire citées dans le FSD</td>
<td>Odonates (3 espèces) Lépidoptères (2 espèces) Coléoptères (2 espèces) Poissons (4 espèces) Reptiles (1 espèce) Mammifères (6 espèces) Flore (1 espèce)</td>
<td>Potentielles Potentielles Potentielles Potentielles Absente Potentielles Absente</td>
</tr>
</tbody>
</table>

III.3. Incidences du projet et conclusion

Comme indiqué plus haut, la qualité des eaux de l’Adour, exutoire final des rejets, ne subira pas d’importantes modifications sur l’ensemble des paramètres visés (DCO, MES, Zn, Cu, Cd, Hc totaux).
De plus, au vu du linéaire de cours d’eau et de fossé existant entre le rejet et la zone Natura 2000 (3,5 km en moyenne – 1,6 km au minimum), la pollution éventuelle générée par le projet sera abattue naturellement par décantation ou par la biomasse présente dans le milieu.

Par ailleurs de par son éloignement du site Natura 2000, le projet n’est pas susceptible d’influencer négativement les habitats et habitats d’espèces de celui-ci situé à l’ouest du projet.

Enfin, les mesures de réduction et de compensation (pêche de sauvegarde, passage à sec et sous chaussée pour la petite faune, reconstitution de ripisylve, aménagement paysager) réduiront l’effet de coupure de façon bénéfique pour les déplacements de la faune.

Ces considérations nous permettent d’estimer qu’il n’y aura pas d’impact sur la zone Natura 2000.

IV. **IMPACT SUR LE MILIEU AQUATIQUE**

Les travaux en cours d’eau seront réalisés en prenant toutes les précautions nécessaires afin d’éviter une pollution du ruisseau.

Néanmoins, pendant les travaux, les impacts suivants sont à prévoir :
- Assèchement de la portion de cours d’eau concernée par les travaux ;
- Destruction localisée de la ripisylve.

Une fois les travaux réalisés, le projet pourra avoir les conséquences suivantes :
- Artificialisation des berges en amont et aval immédiat des busages afin de stabiliser celles-ci ;
- Augmentation de l’ombrage au droit des busages.

V. **INCIDENCES EN PHASE DE CHANTIER**

Les principaux facteurs de pollution, en phase de chantier seront les risques d’apport de matière en suspension dus au terrassement, à la circulation des engins de chantier et les éventuels rejets polluants d’hydrocarbures ou d’huiles liés aux engins.

Bien que l’absence d’intervention en lit mineur de rivière limite fortement le risque de pollution, quelques recommandations, non exhaustives, sont proposées ci-après afin de minimiser les risques de pollution accidentelle ou liée aux lessivages pluviaux :
- La programmation des travaux devra tenir compte des contraintes de calendriers environnementaux. A cet effet et à titre d’exemple, les travaux dans les cours d’eau ne pourront être autorisé qu’entre le 1er Avril et le 31 Octobre ;
- les travaux se dérouleront de préférence lors d’épisode pluvieux de forte intensité afin d’éviter tout transport de pollution dans les fossés et la nappe alluviale et de traiter rapidement une éventuelle pollution accidentelle (déversement d’hydrocarbures, de béton...) par pompage ou écopage ;
- l’implantation de la zone de chantier (aire de stockage des engins et des matériaux) se fera de préférence à distance des axes d’écoulement des eaux superficielles ;
- les opérations de nettoyage, d’entretien, de réparation et de ravitaillement des engins se feront exclusivement à l’intérieur de cette zone.

Avant les travaux, des fossés latéraux et des ouvrages de régulation et de traitement provisoires seront aménagés afin d’éviter le rejet d’eaux de ruissellement chargées dans le milieu naturel pendant les travaux.

Ces consignes figureront dans le CCTP des entrepreneurs en charge des travaux.
C. MEURES DE REDUCTION ET COMPENSATOIRES ENVISAGEES

VI. MESURES DE REDUCTION

VI.1. RUISSEAU LAPOUTGE

Le projet routier empiète sur le cours d’eau Lapoutge situé au nord-est (Cf. schéma ci-dessous). Dès lors, il convient d’éloigner le plus possible l’infrastructure routière du cours d’eau.

L’emprise foncière étant limitée à 20 m de largeur sans possibilité de la modifier, le projet à ce niveau consistera à décaler l’axe routier et à réaliser un mur vertical de soutènement afin de respecter la berge du cours d’eau (Cf. schéma de principe ci-dessous).
A ce stade des études, les caractéristiques du mur de soutènement envisagé seront de 2m dont un mètre enterré en béton. Afin de limiter la durée des travaux et les opérations de bétonnage, il est envisagé la mise en place d’éléments préfabriqués en béton armée.

Le mur sera en retrait d’au moins un mètre cinquante du haut de berge. A ce niveau, les travaux s’effectueront depuis la rive gauche sans porter atteinte au lit du ruisseau de Lapoutge.

A cet endroit, l’obstacle à l’expansion d’éventuelles crues de ce dispositif de mur soutenant la route ne sera pas plus grand que celui de la route en remblai prévue en amont ou en aval de ce secteur.

Par ailleurs, la réalisation à proximité d’une zone de sur inondation dans le cadre de la Zac Parc de l’Adour limitera très fortement le risque d’inondation de ce secteur.

VII. II. MESURES COMPENSATOIRES

VII.1. II.1 REJET DES EAUX PLUVIALES

VII.1.1. II.1.1 COMPENSATION QUANTITATIVE

Dans le cadre du projet, les mesures compensatoires retenues sont basées sur les procédés de rétention dans 7 bassins de rétention, dimensionnés pour une période de retour de 10 ans.

Planches 2 – Principe d’assainissement

VII.1.2. II.1.1.1 Objectifs de régulation

Les débits de fuite des ouvrages ont été calculés sur la base d’un ratio de 3 l/s/ha, comme préconisé par la Police de l’eau, avec un débit de fuite minimum de 6 l/s.

Cela correspond aux débits de fuite suivants :

<table>
<thead>
<tr>
<th>Bassin versant</th>
<th>Débit de fuite (l/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>34</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>49</td>
</tr>
<tr>
<td>5</td>
<td>33</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>37</td>
</tr>
<tr>
<td>Total</td>
<td>172</td>
</tr>
</tbody>
</table>

VII.1.3. II.1.1.2 Dimensionnement des mesures compensatoires

Les ouvrages ont été dimensionnés sur la base des éléments suivants, suivant les préconisations de la Police de l’eau :

- Volume global du bassin dimensionné pour une période de retour de 10 ans et une pluie de 30 minutes (Tarbes-Ossun) ;
- Volume étanche dimensionné pour une période de retour de 2 ans et une pluie de 30 minutes. Ce volume est inclus dans le précédent.
Le volume à stocker résulte de la différence entre le volume ruisselé lors d’une pluie et le volume évacué par l’ouvrage de rétention à un débit de fuite donné :

\[V_u = V_e - V_s = h \times S_a - Q_f \times t \]

- \(V_u \) = volume utile du bassin
- \(V_e \) = volume entrant
- \(V_s \) = volume sortant
- \(h \) = hauteur de pluie (m)
- \(S_a \) = surface active du bassin versant (m²)
- \(Q_f \) = débit de fuite du bassin de rétention (m³/s)
- \(t \) = durée de la pluie considérée = 30 minutes = 1800 secondes

Les surfaces actives considérées ont été déterminées en considérant un coefficient d’apport de 1,0 sur les zones imperméables (chaussée, trottoirs, piste cyclable, fossés) et de 0,2 sur les revêtements perméables (espaces verts, accotements...).

Le tableau ci-dessous présente les résultats obtenus :

<table>
<thead>
<tr>
<th>Bassin versant</th>
<th>Superficie reprise (m²)</th>
<th>Débit de fuite (l/s)</th>
<th>Surface active (m²)</th>
<th>Volume de rétention global (10 ans) (m³)</th>
<th>Volume de rétention étiante (2 ans) (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22 360</td>
<td>7</td>
<td>12 520</td>
<td>280</td>
<td>150</td>
</tr>
<tr>
<td>2</td>
<td>75 090</td>
<td>34</td>
<td>25 530</td>
<td>490</td>
<td>280</td>
</tr>
<tr>
<td>3</td>
<td>7 695</td>
<td>6</td>
<td>4 000</td>
<td>80</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>162 830</td>
<td>49</td>
<td>50 475</td>
<td>1 040</td>
<td>540</td>
</tr>
<tr>
<td>5</td>
<td>110 805</td>
<td>33</td>
<td>39 890</td>
<td>850</td>
<td>440</td>
</tr>
<tr>
<td>6</td>
<td>4 400</td>
<td>6</td>
<td>3 610</td>
<td>80</td>
<td>40</td>
</tr>
<tr>
<td>7</td>
<td>124 395</td>
<td>37</td>
<td>47 270</td>
<td>1 000</td>
<td>520</td>
</tr>
<tr>
<td>Total</td>
<td>507 575</td>
<td>172</td>
<td>183 295</td>
<td>3 870</td>
<td>2 010</td>
</tr>
</tbody>
</table>

(1) Ce calcul tient compte du fait que le débit de fuite du bassin ne sera pas constant du fait de l’ajutage (débit de fuite moyen égal à 2/3 du débit de fuite maximal).

VII.1.4. II.1.3 Description des mesures compensatoires et mesures de suivi

Les eaux de ruissellement du projet seront collectées dans un réseau superficiel étanche puis stockées dans **7 bassins de rétention** avant rejet sous régulation.

Les fossés de collecte de l’opération seront rendus étanches par la mise en place d’une géomembrane et d’un géotextile. Ils seront ensuite végétalisés.

Les regards de régulation placés en aval de chaque bassin seront constitués d’un muret dont la hauteur sera calée sur le niveau des plus hautes eaux (surverse au-delà) et équipé d’un ajutage permettant de restituer le débit de fuite sous une charge hydraulique comprise entre 21 cm et 1,10 m selon les bassins.

Ils seront dotés d’une vanne à fermeture manuelle pour un confiner une éventuelle pollution accidentelle.

L’ajutage a été calculé par la formule suivante découlant de la formule de Bernoulli et donnant la vitesse d’écoulement du fluide :

\[V = \frac{Q}{S} = 0,6 \sqrt{2gh} \]

Avec :
- \(Q \) : débit de fuite
À la section circulaire, le diamètre de l’ajutage est donné par :

\[D = 2 \sqrt[3]{\frac{Q}{\pi \cdot 0.6 \cdot \sqrt{2 \cdot g \cdot h}}} \]

La rétention du projet sera effectuée dans 7 bassins de rétention dont le tableau ci-dessous récapitule les caractéristiques fonctionnelles et géométriques :

<table>
<thead>
<tr>
<th>Bassin</th>
<th>Volume utile (m³)</th>
<th>Volume étanche (m³)</th>
<th>Emprise au sol (m²)</th>
<th>Niveau haut talus</th>
<th>Pente des talus (h : v)</th>
<th>Hauteur d'eau (m)</th>
<th>Hauteur étanche (m)</th>
<th>Revance (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>280</td>
<td>150</td>
<td>565</td>
<td>391,67</td>
<td>3 : 1</td>
<td>0,97</td>
<td>0,60</td>
<td>0,20</td>
</tr>
<tr>
<td>2</td>
<td>490</td>
<td>250</td>
<td>1385</td>
<td>384,04</td>
<td>3 : 1</td>
<td>0,54</td>
<td>0,33</td>
<td>0,20</td>
</tr>
<tr>
<td>3</td>
<td>80</td>
<td>40</td>
<td>495</td>
<td>378,64</td>
<td>3 : 1</td>
<td>0,29</td>
<td>0,15</td>
<td>0,20</td>
</tr>
<tr>
<td>4</td>
<td>1 040</td>
<td>540</td>
<td>2345</td>
<td>362,29</td>
<td>3 : 1</td>
<td>0,59</td>
<td>0,32</td>
<td>0,20</td>
</tr>
<tr>
<td>5</td>
<td>850</td>
<td>620</td>
<td>4390</td>
<td>350,81</td>
<td>3 : 1</td>
<td>0,21</td>
<td>0,11</td>
<td>0,20</td>
</tr>
<tr>
<td>6</td>
<td>80</td>
<td>40</td>
<td>395</td>
<td>352,61</td>
<td>3 : 1</td>
<td>0,27</td>
<td>0,14</td>
<td>0,20</td>
</tr>
<tr>
<td>7</td>
<td>1 000</td>
<td>520</td>
<td>1455</td>
<td>340,60</td>
<td>3 : 1</td>
<td>1,10</td>
<td>0,67</td>
<td>0,20</td>
</tr>
</tbody>
</table>

Chaque bassin présentera, en plus du volume utile calculé ci-dessus, un volume mort de 50 m³ sous le fil d'eau de sortie afin de confiner une pollution accidentelle éventuelle. Ils seront clôturés et dotés d'un bypass. L’ouvrage de rejet sera doté d’une grille à barreaux.

Les bassins seront équipés d’une piste d’entretien les ceinturant afin d’accéder aux ouvrages d’entrée et de sortie. Une piste d’accès au fond du bassin sera aménagée.
Les coupes des bassins sont disponibles en planches 2.

Nota : le bassin n°7 fonctionne par débordement : l’ouvrage de régulation met en charge la canalisation d’admission/rejet qui déborde par les grilles présentes en fond de bassin.

Concernant les mesures de l’incidence des rejets pluviaux dans les milieux naturels aquatiques, le Département mettra en place un plan de suivi.
Ce plan de suivi concernera les trois bassins les plus significatifs et ayant un exutoire sur un milieu naturel. Cela concerne :
- Bassin 4 avec un rejet dans le fossé des Aulnes
- Bassin 5 avec un rejet dans le cours d’eau des Arribets
- Bassin 7 avec un rejet dans le cours d’eau de La Poutge

Au niveau de chacun de ces bassins, il sera mis en place un suivi de la qualité en 2 points :
- Un point de mesure à l’amont du rejet dans le milieu naturel
- Un point de mesure à l’aval du rejet dans le milieu naturel

Il est présenté ci-dessous le positionnement des points de mesures prévus pour chaque bassin concerné :

Ces mesures seront réalisées après épisodes pluvieux intenses à une fréquence bisannuelle (en moyenne 1 analyse par semestre).
Les paramètres mesurés porteront en priorité sur la physico-chimie (DBO5, DCO, MES, hydrocarbures). En complément et suivant la nature de l’épisode, des mesures spécifiques sur certains paramètres (métals lourds par exemple) pourront être envisagées pour répondre aux préconisations du service de Police de l’eau, destinataire des résultats de suivi.

VII.2. II.1.2 NIVEAU DE LA NAPPE

Le niveau de la nappe a été identifié lors de l’étude géotechnique du projet (SOLETCO, janvier 1990) à 7,5 m de profondeur sur les sondages situés au niveau du giratoire de la RD92E.

Cela correspond à un niveau NGF de 330,00 m environ, ce qui reste très inférieur au niveau du fond du bassin 7.

Aucune venue d’eau n’a été identifiée sur les autres sondages, ce qui laisse présager aucun impact de la nappe sur les autres bassins.

VII.3. II.1.3 COMPENSATION QUALITATIVE

Comme démontré au paragraphe B.II., le projet n’aura pas d’incidence sur la qualité du milieu récepteur.

En effet, l’abattement des charges dû aux fossés enherbés et aux bassins de rétention est suffisant pour obtenir une eau d’une qualité suffisante pour ne pas dégrader celle du milieu récepteur.

II.2 RETABLISSEMENT DES ECOULEMENTS NATURELS ET EXUTOIRES EN COURS D’EAU

VII.3.1. II.2.1 Préconisations générales

Le projet interceptant plusieurs écoulements naturels, leur rétablissement est nécessaire.

De plus, les exutoires pluviaux des bassins de rétention seront aménagés dans les cours d’eau en prenant toutes les précautions nécessaires afin de ne pas dégrader celui-ci.

De manière générale, les travaux en cours d’eau seront réalisés à sec, par la mise en place de batardeaux afin de limiter les apports de fines dans le cours d’eau. Ce dispositif d’assèchement sera retiré de manière progressive afin de permettre une remise en eau progressive. Aucun engin ne pénètrera dans le lit mineur du ruisseau.

Ils seront réalisés en période de basses eaux, en dehors des périodes de reproduction des espèces aquatiques présentes (du 1er novembre au 15 mars).

Les engins utilisés pendant les travaux seront stationnés et entretenus sur une zone éloignée du ruisseau (hors lit mineur et hors de tout risque d’atteinte par des crues). Les engins ayant servis à la confection ou au transport de béton seront nettoyés sur une zone spécifique, sans contact avec un cours d’eau. Les produits susceptibles de porter atteinte à la qualité des eaux seront stockés à une distance raisonnable du cours d’eau permettant de s’assurer de la non-contamination de celui-ci.

VII.3.2. II.2.2 Déviation et busage du ruisseau d’Ordizan

L’aménagement nécessite la déviation du ruisseau d’Ordizan, au Sud de Bernac-Debat, environ 25 m à l’Est de son cours actuel, ainsi que son busage au droit des aménagements, en 4 points. La dérivation reprendra la section actuelle du ruisseau donnée ci-après:
Le lit du ruisseau sera aménagé de manière à présenter une granulométrie proche de l’actuelle, en réutilisant les matériaux du ruisseau si possible.

En l’absence de données de débit, les busages reprennent la section du busage existant le plus grand : ouvrage cadre de 65 x 45 cm (l x h). La hauteur sera augmentée de 30 cm afin de pouvoir recouvrir le fond de l’ouvrage par des matériaux de même type que ceux formant le fond du ruisseau et ainsi limiter l’effet d’interruption du ruisseau. La section utile correspond à une capacité de 580 l/s pour une pente de 1 %.

Les berges du ruisseau seront stabilisées par enrochement sur environ 2 mètres en amont et en aval du busage.

La prise d’eau existante permettant d’alimenter le fossé longeant la RD8, située sur la partie déviée du cours d’eau, sera maintenue par la création d’un nouvel ouvrage identique au précédent, et d’un siphon sous la chaussée.

VII.3.3. II.2.3 Busage du fossé Est longeant la RD 8

Afin de permettre la liaison entre l’aménagement et la RD8 actuelle au Sud de Soues, le busage des fossés longeant celle-ci est nécessaire.

Ils sont actuellement déjà busés en Ø400 à l’entrée du lotissement situé à proximité du giratoire projeté, soit à l’aval immédiat des busages projetés. Par souci d’homogénéité, les busages projetés seront de même dimension. Cela correspond à une capacité de 170 l/s pour une pente identique l’actuelle, soit 1,1 %.

VII.3.4. II.2.4 Busage du ruisseau des Arribets

Le busage du ruisseau des Arribets est nécessaire puisqu’il croise le projet.

L’étude « Protection contre les crues de la ZAC Adour » (CACG, juillet 2006) a estimé le débit du ruisseau pour l’événement le plus critique connu (crue de mai 1993) à 5,7 m³/s.

Le projet de la ZAC prévoit le busage du ruisseau à l’aide d’ouvrages cadre de 2 m de largeur pour 1 m de hauteur. Nous proposons d’installer le même type d’ouvrage mais plus large (2,5 m) afin qu’il puisse également servir au passage des petites faunes. Il présentera une capacité de 8,5 m³/s pour la pente actuelle du ruisseau (0,7 %).

Afin de perturber au minimum les espèces présentes, une reconstitution du lit du ruisseau sera réalisée en fond de busage, sur environ 30 cm. Cette reconstitution sera aménagée de manière à créer un écoulement favorable au centre du busage afin de concentrer les eaux d’étiage.
Afin de stabiliser les berges du ruisseau en amont et aval immédiat du busage, un enrochement sera aménagé sur environ 2 m en amont et aval.

VII.3.5. II.2.5 Passages à sec

Des passages à sec pour la petite faune seront aménagés à l’intérieur des traversées de routes pour l’ensemble des ruisseaux interceptés par le projet routier (Cf. carte 3.0).

Les ponts-cadres à installer auront une sur-largeur assurant ainsi la continuité des berges de 50cm de large environ hors d’eau de part et d’autre du lit mineur ainsi qu’une hauteur supérieure à 0,70m permettant ainsi le passage de la petite et moyenne faune terrestre (mustélidés et autre petite faune : renard, rongeur, hérisson) et semi aquatique (Guide technique SETRA, 2007, Typologie des passages) susceptibles d’être dans ces secteurs.

De plus, des buses positionnées perpendiculairement à l’axe de la chaussée permettront le passage de la petite faune sur la zone indiqué sur le plan suivant.

VIII. II.3 RECONSTITUTION DE RIPISYLVE

Au niveau du cours d’eau Lapoutge, la ripisylve, de faible épaisseur, étant détruite sur environ 300m, il sera procédé à sa reconstitution par la plantation de saules sur le talus assurant aussi la protection de ce dernier.

Au préalable, la berge du cours d’eau sera consolidée par une technique de génie végétal (fascine de pied de berge ou treillis) qui sera choisie lors de la phase du projet définitif (Cf. Schéma de principe ci-dessous).
D. COMPATIBILITÉ DU PROJET AVEC LE SDAGE ET SAGE

I. COMPATIBILITÉ DU PROJET AVEC LE SDAGE

Le Schéma Directeur d’Aménagement et de Gestion des Eaux (SDAGE 2016-2021) du bassin Adour-Garonne (adopté, le 1er décembre 2015, par le Comité de Bassin) fixe les orientations fondamentales d’une gestion équilibrée de la ressource en eau sur le bassin Adour-Garonne (milieux aquatiques, quantité et qualité des eaux).

Le SDAGE et le PDM (programme de mesures associé au SDAGE) intègrent notamment les obligations définies par la directive européenne sur l’eau (DCE) ainsi que les orientations du Grenelle de l’environnement pour atteindre un bon état des eaux d’ici 2021.

Les objectifs fondamentaux du SDAGE sont les suivantes :
- Orientation A : créer les conditions de gouvernance favorables à l’atteinte des objectifs du SDAGE ;
- Orientation B : réduire les pollutions ;
- Orientation C : améliorer la gestion quantitative ;
- Orientation D : préserver et restaurer les fonctionnalités des milieux aquatiques.

Le projet est concerné par les orientations suivantes :

- **Orientation B : réduire les pollutions**

Le SDAGE souligne ici la nécessité d’agir sur les rejets en macropolluants et micropolluants, de réduire les pollutions d’origine agricole et assimilée, de préserver et reconquérir la qualité de l’eau pour l’eau potable et les activités de loisirs liées à l’eau et la qualité des eaux des estuaires et des lacs naturels.

Dans le cas présent, la réduction du débit rejeté au milieu naturel et l’abattement des pollutions dans les bassins, permettant de garantir l’absence d’incidence sur le milieu naturel, vont dans ce sens (dispositions B2, B3 et B6).

Notons par ailleurs que les préconisations fournies en vue de limiter ces incidences en phase chantiers s’inscrivent tout particulièrement dans le cadre de cet objectif. Cet aspect est donc bien compatible avec le projet envisagé.

Les puits de Soues (SIAEP Adour-Coteaux ; n°BSS : 10316 X 0021) font partie des captages d’eau potable prioritaires listés dans la disposition B25. Cette disposition veille à la protection des ressources en eau alimentant les captages les plus menacés. Notre projet respecte cette disposition puisqu’aucune infiltration n’est prévue.

- **Orientation D : préserver et restaurer les fonctionnalités des milieux aquatiques**

Le SDAGE préconise de réduire l’impact des aménagements et des activités sur les milieux aquatiques, de gérer, entretenir et restaurer les cours d’eau, la continuité écologique et le littoral, de préserver et restaurer les zones humides et la biodiversité liée à l’eau et de réduire la vulnérabilité et les aléas d’inondation.

La maîtrise des débits ruisselant sur l’opération garantit l’absence d’incidence quantitative du projet sur le milieu. Il s’inscrit donc particulièrement dans le respect de la mesure D50 (adapter les projets d’aménagement).
II. COMPATIBILITE DU PROJET AVEC LE SAGE

Les communes concernées par le projet font partie du SAGE Adour amont lequel a été approuvé par arrêté interpréfectoral le 19 mars 2015. Il est constitué d'un Plan d'Aménagement et de Gestion Durable (PAGD) et de ses annexes cartographiques, ainsi que d'un règlement.

Le PAGD a pour vocation de définir les enjeux du territoire en matière d'eau et de milieux aquatiques, les objectifs généraux et les dispositions pour les atteindre.

Ses dispositions, qui se rattachent chacune à un ou plusieurs objectifs généraux et enjeux, sont regroupées au sein de cinq thématiques :

- Alimentation en eau potable
- Qualité de l'eau
- Gestion quantitative
- Milieux naturels
- Gouvernance

Le projet est particulièrement concerné par les orientations ci-dessous, regroupées sous les thématiques Qualité de l'eau et Milieux naturels :

- **Orientation C : Diminuer les pollutions urbaines, domestiques et industrielles**

Le SAGE établit la nécessité de diminuer l’impact des rejets d’eaux pluviales afin de limiter les pollutions urbaines, domestiques et industrielles (sous disposition 5.1).

Dans le cadre de ce projet, la réduction du débit rejeté au milieu naturel et l’abattement des pollutions dans les bassins constituent des mesures visant à respecter ces dispositions.

- **Orientation J : Promouvoir une gestion patrimoniale des milieux et des espèces**

Le territoire du SAGE Adour amont possède une richesse et une diversité environnementales, qui se manifestent par des habitats naturels aquatiques ou humides, et de nombreuses espèces (flore et faune) associées à ces habitats.

Afin de ne pas détériorer les conditions de continuité écologique, les sous dispositions 20.3 et 20.4 du SAGE veillent à la préservation et la restauration de la continuité écologique dans les cours d’eau.

Dans le cas présent, le projet est conforme avec ces dispositions puisqu’il les ouvrages de franchissement des cours d’eau ainsi que les déviations ont été conçues de manière à respecter la continuité écologique (pentes, reconstitution du lit mineur).
E. RAISONS POUR LESQUELLES LE PROJET A ÉTÉ RETENU ET RESUME NON TECHNIQUE

I. RAISONS POUR LESQUELLES LE PROJET A ÉTÉ RETENU

Le Conseil Départemental des Hautes-Pyrénées souhaite désenclaver les RD 935 et RD 8 actuelles, par la déviation de la RD 8 en créant un nouveau tracé entre Tarbes et Bagnères de Bigorre.

Ce nouveau tracé a été divisé en 4 tronçons, dont le tronçon Soues – Arcizac-Adour, objet de la présente demande d’autorisation. Il se raccorde à Soues sur le giratoire de la future ZAC « Parc de l’Adour ».

Le projet a pour objectif :
- De soulager les traversées d’agglomération du trafic de transit ;
- De renforcer la sécurité sur cet axe, notamment pour les riverains ;
- D’améliorer les échanges avec les autres voies importantes dont la RD15, la RD16, la RD508 et la RD86 ;
- De simplifier les liaisons entre Barbazan-Debat, Sémeac et Soues et l’accès des communes du Sud et Sud-Est de Tarbes vers l’échangeur Tarbes-Est ;
- De détourner l’itinéraire d’un passage à niveau dangereux avec la voie ferrée entre Arcizac-Adour et Bernac-Debat ;
- De réduire les nuisances sur les riverains de la RD8 existante (nuisances sonores, pollution atmosphérique, nuisances visuelles et vibrations dus aux passages des poids lourds).

Les ouvrages de rétention ont été choisis afin de respecter les prescriptions de la Police de l’eau et de garantir une gestion quantitative et qualitative des eaux pluviales. En outre, les ouvrages enherbés ont l’avantage d’être simples d’entretien et de participer à l’abattement des charges.

II. RESUME NON TECHNIQUE

II.1. PRÉSENTATION DU PROJET

Il concerne 1 des 4 tronçons de voie rapide qui permettront de désenclaver la vallée de l’Adour.

II.2. CONTEXTE RÉGLEMENTAIRE

Le site est parcouru par de nombreux canaux d’irrigation artificiels et quelques ruisseaux, dont le projet prévoit la déviation et/ou la canalisation.

Ces canaux présentant un aspect naturel et l’écoulement étant continu, ils sont considérés comme des cours d’eau et les travaux effectués sur ceux-ci et sur les ruisseaux sont réglementés par la Loi sur l’eau.

De plus, la superficie du projet étant supérieure à 1 ha, le projet est également soumis à la Loi sur l’eau.
Au vu des caractéristiques du projet et des travaux projetés, le projet est donc soumis à une procédure d’autorisation au titre de la Loi sur l’eau.

Cela implique une étude des incidences du projet sur le milieu naturel et la mise en œuvre de mesures compensatoires destinées à limiter ces incidences.

II.3. État initial

La première partie du document d’incidences consiste en une analyse de l’état initial du milieu.

Nous résumons ici les principaux enjeux mis en évidence :

- Présence sur le site de nombreux fossés d’irrigation qui ont pour utilité de drainer la plaine et de permettre l’irrigation de nombreuses parcelles ;
- Le projet prévoit la traversée du ruisseau des Arribets, qui présente un intérêt en ce qui concerne les habitats et les peuplements aquatiques ;
- Au final, les fossés d’irrigation et les ruisseaux concernés par le projet sont admis dans l’Adour, qui présente un bon état écologique qu’il conviendra de préserver ;
- Les eaux souterraines liées à l’Adour sont utilisées pour l’alimentation en eau potable et sont donc à préserver ;
- Le risque d’inondation a été supprimé du fait de l’aménagement d’une zone de sur-inondation dans le cadre de la ZAC de l’Adour connexe au projet.

Le présent dossier d’autorisation au titre de la loi sur l’eau présenté ici est étroitement lié à la réalisation de la ZAC Parc Adour que ce soit en termes de surfaces commerciales ou des infrastructures routières.

Dans l’éventualité où les travaux liés à la ZAC Parc Adour seraient soit décalés dans le temps soit abandonnés, le présent dossier d’autorisation devra être revu et adapté.

A titre informatif, Le CD65 a d’ores et déjà entamé des échanges et des réflexions communes avec la CACG pour envisager des scénarios alternatifs réalistes.

II.4. Incidences du projet et mesures compensatoires

Les incidences du projet portent en majorité sur :

- Le busage du ruisseau des Arribets ;
- La déviation et le busage du ruisseau d’Ordizan ;
- Le rejet d’eaux pluviales dans le milieu naturel.
- La mise en place d’un mur de soutènement au niveau du ruisseau de Lapoutge.

A ce titre, des mesures seront prises afin de limiter les incidences.

En ce qui concerne le busage du ruisseau des Arribets, celui-ci sera de taille suffisante afin d’évacuer les débits exceptionnels et ainsi être transparent en cas de crue. De plus, afin de perturber au minimum les espèces présentes dans ce cours d’eau et d’éviter un effet de coupure au niveau du busage, le fond du lit du ruisseau sera reconstitué sur 30 cm en fond de busage. Enfin, afin de limiter l’érosion en entrée et sortie de busage, les berges seront confortées par un enrochement.

La déviation du ruisseau d’Ordizan sera réalisée en conservant la section naturelle du ruisseau, et en reconstituant son lit. Les busages seront réalisés en conservant les dimensions des busages actuels, qui sont suffisamment dimensionnés.

Afin de limiter l’impact des rejets d’eaux pluviales dans le milieu naturel, ceux-ci seront réduits et des bassins de rétention seront créés. Ils présenteront des caractéristiques en accord avec les prescriptions de
la Police de l’eau : volume étanche pour les pluies fréquentes et volume non étanche pour les pluies exceptionnelles.

En plus de la limitation du rejet, les bassins de rétention permettent également de décanter la pollution contenue dans les eaux pluviales. En effet, sans mesure compensatoire, le projet pourrait dégrader la qualité de l’Adour par le biais de rejet de polluants issus de la plate-forme routière. Grâce aux bassins de rétention, la pollution est décantée et la qualité de l’Adour n’est pas modifiée. Ceci est calculé dans le document d’incidences à l’appui de calculs de dilution.

Par la mise en place de réseaux de collecte des eaux pluviales étanches et celle d’un volume étanche dans les bassins de rétention, l’impact sur les eaux souterraines sera très faible, voire nul.

Enfin, afin de prévenir la pollution générée par un événement accidentel, consécutif au déversement du contenu d’un camion-citerne par exemple, un volume « mort », non évacué, sera aménagé en fond de chaque bassin. De plus, les ouvrages de régulation seront équipés d’une vanne manuelle. Elles permettront de stocker la pollution en attendant un pompage par les services concernés.
PIECE V - MOYENS DE SURVEILLANCE ET D'INTERVENTION
Afin que les dispositifs de stockage et de traitement des eaux pluviales assurent leur fonction au cours du temps, le suivi et l'entretien sont primordiaux.

Il est demandé au maître d'ouvrage de s'engager sur l'entretien pérenne des ouvrages. Il devra conserver les justificatifs attestant du bon entretien des réseaux d'eaux pluviales et de leurs ouvrages associés (carnet d’entretien des ouvrages, bons de commande auprès de d’entreprises, factures) et du suivi des déchets (produits de curage, flottants,...) générés par les ouvrages. Le service de police de l'eau sera amené à demander au maître d'ouvrage la production de ces documents, lors de contrôles.

De manière à optimiser l'efficacité du dispositif d'assainissement et des ouvrages aménagés, on procédera à des opérations régulières de maintenance et d'entretien des ouvrages :

- nettoyage, curage et fauchage des dispositifs de collecte et de rétention végétalisés (fossé, noue, bassin de rétention à ciel ouvert)
- visite et hydrocurage des réseaux de collecte enterrés
- vérification de la non-obturation des ouvrages hydrauliques de franchissement
- vérification du bon fonctionnement de tous les organes de régulation et d’infiltration (non colmatage des ajutages, intégrité des dispositifs de surverse, non colmatage des puisards).
- Nettoyage systématique des éléments pouvant nuire au bon fonctionnement de l’assainissement pluvial (bois flottés, fines et autres décantas, déchets....)

Les déchets issus de ces opérations devront faire l'objet d’un traitement voire d’une valorisation dans des centres agréés.

Les opérations de surveillance et d’entretien ci-dessus seront conduites selon les fréquences suivantes :

- **Opérations de surveillance** (vérifications visuelles et interventions si besoin est) : **tous les 2 à 3 mois**.
- **Opérations d’entretien** : **1 à 2 fois par an.** Ces opérations consisteront à une remise en état général de l’ensemble de l’assainissement pluvial. Les organes de collecte végétalisés (noues, bassins de rétention ...) devront en outre faire l’objet d’un entretien plus suivi aux périodes de poussée (printemps / été).

De plus, lors des travaux en cours d’eau, en cas de problème ou d’incident :

- Les travaux seront immédiatement interrompus et les dispositions nécessaires pour limiter l’incidence sur le milieu et l’écoulement des eaux seront prises ;
- Le service départemental de l’AFB et le service département de la Police de l’eau seront prévenus dans les meilleurs délais.
PIECES GRAPHIQUES
PLANCHES 1 – DESCRIPTION GENERALE DU PROJET
1.0 - Vue en plan générale

1.1 - Coupe type AA'

1.2 - Coupe type BB'

1.3 - Coupe type CC'

1.4 - Coupe type DD'

1.5 - Coupe type EE'
PLANCHES 2 – PRINCIPE D’ASSAINISSEMENT
2.0 - Vue en plan générale avec identification des planches

2.1 - Synoptique de l'assainissement pluvial – Bassin versant 1

2.2 - Synoptique de l'assainissement pluvial – Bassin versant 2

2.3 - Synoptique de l'assainissement pluvial – Bassin versant 3

2.4 - Synoptique de l'assainissement pluvial – Bassin versant 4(1)

2.5 - Synoptique de l'assainissement pluvial – Bassin versant 4(2)

2.6 - Synoptique de l'assainissement pluvial – Bassin versant 5(1) et 6

2.7 - Synoptique de l'assainissement pluvial – Bassin versant 5(2)

2.8 - Synoptique de l'assainissement pluvial – Bassin versant 7(1)

2.9 - Synoptique de l'assainissement pluvial – Bassin versant 7(2)

2.10 - Coupe du bassin de rétention 1

2.11 - Coupe du bassin de rétention 2

2.12 - Coupe du bassin de rétention 3

2.13 - Coupe du bassin de rétention 4

2.14 - Coupe du bassin de rétention 5

2.15 - Coupe du bassin de rétention 6

2.16 - Coupe du bassin de rétention 7
PLANCHES 3 – CONTEXTE HYDROGRAPHIQUE
3.0 - Contexte hydrographique général

3.1 - Contexte hydrographique – Vue en plan de l'état initial

3.2 - Contexte hydrographique – Vue en plan de l'état projeté
PLANCHE 4 – ECOULEMENTS LORS D’UN EVENEMENT EXCEPTIONNEL
4.1 - Ecoulements lors d'un évènement exceptionnel – Vue en plan générale
ANNEXES
ANNEXE 1

CARTOGRAPHIE INFORMATIVE DES ZONES INONDABLES
ANNEXE 2

DONNEES QUALITATIVES ET QUANTITATIVES DU MILIEU RECEPTEUR
ANNEXE 3

EXTRAIT DES CARTES ANNEXEES A L’ARRETE DE DESIGNATION DE LA ZSC « VALLEE DE L’ADOUR » ET FORMULAIRE STANDARD DE DONNEES (SITE NATURE 2000 FR7300889)
ANNEXE 4

CAPTAGES D’EAU POTABLE